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Abstract

This paper extends the work by Ding, Granger, and Engle (1993) and further examines
the long memory property for various speculative returns. The long memory property
found for S&P 500 returns is also found to exist for four other different speculative
returns. One significant difference is that for foreign exchange rate returns, this property
is strongest when d = 1/4 instead of at d = 1 for stock returns. The theoretical autocorre-
lation functions for various GARCH(l1, 1) models are also derived and found to be
exponentially decreasing, which is rather different from the sample autocorrelation
function for the real data. A general class of long memory models that has no memory in
returns themselves but long memory in absolute returns and their power transformations
is proposed. The issue of estimation and simulation for this class of models is discussed.
The Monte Carlo simulation shows that the theoretical model can mimic the stylized
empirical facts strikingly well.
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1. Introduction

With the availability of high-frequency long time series from returns of
speculative asset, much research has been devoted to the study of long-run
behavior of financial data. A common finding in much of the empirical literature
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is that the returns themselves contain little serial correlation which is in agree-
ment with the efficient market hypotheses. However, ii is also found that the
absolute returns and their power transformations are highly correlated. A sys-
tematic study of this can be found in Taylor (1986). These empirical regularities
culminated by the publication of Ding, Granger, and Engle (1993). In that paper,
they investigate the autocorrelation structure of |r|¢, where |r,| is the daily S&P
500 stock market returns, and d is a positive number. It is found that |r,| has
significant positive autocorrelations at over 2,700 lags with a series of 17,054
observations. Similar results are also found for other values of d in |r,]%. This
property is found to be strongest when d = 1 compared to both smaller or larger
d values. These properties are examined for several other long speculative asset
returns series, including returns for the Japanese stock market index Nikkei,
foreign exchange rate returns for the Deutschmark with the US dollar, indi-
vidual stock returns for Chevron, and minute-by-minute stock returns for
a Japanese food company, Ajinomoto. The results show the long memory
property found for S&P 500 returns in Ding, Granger, and Engle (1993) also
exist here. One significant difference is that for foreign exchange rate returns,
this property is strongest when d = ; instead of at d = 1 for stock returns.

It is also quite comman view that the volatility persistence is best represented
by the fact that the estimated ARCH and GARCH parameters in a GARCH
medel sum to very close to one. So the Integrated GARCH(!, 1) model comes
out very naturally to model the volatility persistence (see Engle and Bollerslev,
1986). However, in Section 3, we prove that the autocorrelation function for an
IGARCH(1, 1) process is exponentially decreasing and is very different from the
sample autocorrelation function found for various speculative returns in Section
2. In Section 4, a new general class of models that has no memory in returns
themselves but long memory in absolute returns and their power transforma-
tions is proposed. The relationship between this class of models and other
models is also discussed. Estimation and simulation results for S&P 500 stock
market returns using this class of models are presented. The Monte Carlo
simulation shows that the theoretical model can mimic the stylized empirical
facts strikingly well. Section 5 concludes the analysis.

2. Autocorrelation analysis of various financial time series

In Ding, Granger, and Engle (1993), the sample autocorrelation function for
S&P 500 daily stock market returns and their transformations are presented.
There, a long memory property for |r,|* is established and is found to be
strongest for d = 1 compared to other values of d. For the convenience of later
reference and comparison, Fig. 1 plots the sample autocorrelations for ry, |1,
and r? of S&P 500 stock market returns up to lag 2,500. As pointed out by Ding,
Granger, and Engle, the sample autocorrelation function for absolute returns
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and squared returns remains significantly positive for all these lags, while most
sample autocorrelations for r, are not significantly different from zero. The
sample autocorrelations for |r,| are consistently higher than that for r2. It is seen
that the sample autocorrelation function decreases very fast at the beginning,
and then decreases very slowly and remains significantly positive, which is
different from an exponentially decreasing function. Figs. 2 to 5 plot the sample
autocorrelations for four other speculative returns: daily returns for Japanese
stock market index Nikkei from 1970 to 1992 with 5,594 observations; daily
foreign exchange rate returns for the Deutschmark with the US dollar from
January 1971 to March 1992 with 5,311 observations; daily individual stock
returns for Chevron from July 1962 to December 1991 with 7,420 observations;
and minute-by-minute (not necessarily equal time interval) stock returns for
a Japanese food company, Ajinomoto, from April 3, 1989 to April 30, 1992 with
a total of 25,099 observations. It is clearly seen that the striking regularities
found for S&P 500 also exist for all these four different speculative returns. The
patterns of the sample autocorrelations are very similar to each other. Fig. 3
also plots the sample autocorrelation functions for the absolute foreign ex-
change rate returns raising to power 3. It is found that, different from that of
stock returns, this property is stronger at } than any other values for foreign
exchange rate returns.

Table 1 gives the summary statistics for the above five financial series. The
mean returns for all five series are very close to zero. The returns for S&P 500,
Nikkei, and DM/US are negatively skewed, while the returns for the two
individual stocks, Chevron and Ajinomoto, are positively skewed. All five
returns are leptokurtic in the sense that the kurtosis for all these returns are
bigger than that of a normal distribution, which is 3. The normality test refers to
the Jarque-Bera normality test, and the test siatistics show that all the five
return series are not normal.

Table 2 further gives the numerical values of the sample autocorrelations for
r, irl, and rf at lags 1, 2, 3,4, 5, 10, 100, 200, and 500 for these five returns.The
last column (Neg. lag) gives the lag at which the first negative sample autocorre-
lation occurs for the corresponding series. The numbers in parentheses in the
first column are two times the standard errors of the sample autocorrelation for
the corresponding series if they are not correlated and have finite variances. It is
seen that for the return series r, only onc (for exchange rate return), or two (for
S&P 500, Nikkei, and Chevron), or at most four (for Ajinomoto) lags of sample
autocorrelations of those shown are significantly different from zero. However,
ir,} and r2 have many lags of significantly positive sample autocorrelations.
Usually the number of positive sample autocorrelations is increasing with the
sample size. For various values of d (not shown here), |r,|¢ has the largest
autocorrelation when d = 1, except for foreign exchange rate returns, which has
the strongest sample autocorrelation when d = ;. This last property, the power
transformation has the strongest autocorrelation when d = 1 for S&P 500 and
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other stock returns, has been referred to as the Taylor effect by Granger and
Ding (1995). Their research gives strong evidence that the absolute returns have
a conditional exponential distribution and pairs of absolute returns have a joint
exponential distribution. The result is more significant if the outliers outside the
four standard deviations are reduced to four standard deviations. They also
showed that the Taylor effect is a consequence of this distribution.

3. The autocorrelation functions of ARCH and GARCH processes

The stylized empirical regularities discussed in Section 2 pose a challenging
task for econometricians to develop models to describe the phenomena. Al-
though the Taylor effect has been considered by Granger and Ding (1995), the
problem of modeling the long memory behavior of the absolute returns or the
squared returns remains largely unsolved. Engle (1982) proposed the ARCH
model to forecast the variance conditional upon past information. The condi-
tional variance is a linear function of past squared residuals. The ARCH(p)
process is defined as follows:

& = 0,e, e, ~iid. D(0,1),

P
ol=ao+ Y ae; (3.1

i=1
The ARCH model has the property that the residuals themselves, here ¢, are not
correlated with each other since ¢, is i.i.d. over time and is independent of o,. But
the squared residuals, here &2, are correlated with each other over time and are
forecastable. It follows that || or |r,|% where d is a positive number, are also
correlated with each other and are largely forecastable. So the ARCH model

captures some of the empirical facts found in Section 2.

Asillustrated by the plots in Section 2, the absolute returns or squared returns
are significantly correlated over long lags. This suggests that the data might
require a lot of ARCH lags in order to be fully described. Bollerslev (1986)
generalizes the ARCH model by adding lagged g, in the conditional variance
equation. So the GARCH model is as follows:

P q
2 2
d=up+ Y we—i+ Y, Bioi-j. (3.2)
i=1 j=t

The way the GARCH term is introduced, and the reason the GARCH model is
so popular are largely due to its convenience in implementation. One can find its
counterpart in Box-Jenkins’ ARMA technique in modeling the mean.

Taylor (1986) gives the autocorrelation functions for &2 of an ARCH(p)
process, and shows that it follows the same Yule-Walker equation for the
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associated zero-mean AR(p) process provided the fourth moment of ¢, exists,

p

P = Z XiPr—i- (3.3)
i=1
Bollerslev (1986) derives the autocorrelation functions for &7 of a GARCH(p,q)
process under the same condition as above and shows

=Y Gip-in k=Zq+1, (34)
i=1

where m = max(p,q), and ¢;=o; + f; for i =1,....m, ;=0 for i > p, and
;=0 for i > q. The above formula is again the same as the Yule-Walker
equation for a zero-mean AR(m) process. Unfortunately, no explicit result is
available for GARCH(p, q) model when k < q.

In empirical research, the most often used GARCH model is GARCH(1,1). It
will be interesting to see the theoretical autocorrelation functions for
GARCH(1,1) process. For ease of exposition, it will be assumed that the
distribution is conditional normal and ¢ is covariance-stationary so that
o + f# < 1. These assumptions will be removed later, and it will be shown that
similar results still hold.Under the above assumptions the GARCH(1, 1) process
can be represented in its asymptotic form as follows:

ol =06*1 —a—B)+agl, + ol .. (3.9)

where 62 is the unconditional variance of ¢,. Rearranging the above equation
one gets

812 —ai=(@+ ﬁ)(gnz-l - 52) - ﬁatz—l(erz—l -+ 0.'2(‘,'2 -1 (3.6)

Multiplying both sides of the above equation by (6%, — ¢2) and taking expecta-
tion one has

71 = (2 + B)yo — 2BEa ., (3.7

where y, = E(¢2 — 62)(e%, — 6?) is the covariance between ¢ and & ,, and
vo = E(¢%, — 62)? is the variance of ¢2.,.

Ifit is further assumed that 32 + 2af + B2 < 1, so that the fourth moment of
& exists, then it is shown in Bollerslev (1988) that

a’p

p1=a+l—_‘_m» (3.8)

Combining this with (34), one has the autocorrelation function for
GARCH(1, 1) process, when the fourth moment exists, as follows:

2
Pk = (d + T_—-;an—T) (x + ﬁ)k_l . (3.9)
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For the convenience of Ia.er reference, a detailed derivation of the above formula
is given in the Appendix. It should be noted that p, = 0 when « = 0, which is not
surprising. When « = 0, the conditional variance process is a deterministicaily
time-varying process independent of ¢, so g, =0 is what one should have
expected. In fact, much of the above discussions is valid even if the fourth
moment does not exist or is infinite. Assume now o+ f <1, but
30% + 2af + B2 = 1, s0 ¢, is covariance-stationary, but its fourth moment does
not exist or is infinite. Under this assumption, Eq. (3.7) still holds, but y,, 4, and
Eo; | are time-dependent and will go to infinity. However, the sample autocor-
relation functions of any observed time series are always defined. By using
Jensen’s inequality, it is shown in the Appendix that if the process starts a very
long time ago, then the first-order autocorrelation function is approximately as
follows:

prxa+ 3 (3.10)
and the autocorrelation functicn at lag k is approximately
= (o +3B) o + B 3.1

From this it is clear that the autocorrelation function still decreases expo-
nentially. It shouid be noted that this expression is identical to (3.9) when
302 + 2af + B2 = 1, i.e, the autocorrelation function changes continuously as
long as the GARCH(1, 1) model is covariance-stationary.

It is also commonly found in empirical research that the sum of the estimated
ARCH and GARCH parameters in a GARCH(1, 1) model is very close to one.
For example, Taylor (1986) estimated GARCH(1, 1) models for 40 different
financial time series, The results show that for all but six of the 40 series the
estimated value of o + f is greater than or equal to 0.97. In Ding, Granger, and
Engle (1993), the estimated value of o + f for daily S&P 500 returns is 0.997.
This regularity is widely considered to be a characteristic of volatility persist-
ence. The Integrated GARCH(1, 1) model, which restricts « + = 1, is then
introduced by Engle and Bollerslev (1986) to model long-run volatility persist-
ence. The IGARCH(1, 1) model is always related to the random walk process in
mean. However, Nelson (1990) shows that IGARCH(1, 1) process without drift
is strictly stationary and goes to zero almost surely even though it is not
covariance-stationary.

More interestingly, using the similar procedure as before, it is shown in the
Appendix that the approximate autocorrelation function for & from an
IGARCH(l, 1)-type of model is as follows:

pe =301+ 20)(1 +2¢2)"¥2,  x#0. (3.12)

The result is the same no matter whether there is a positive drift or not. It should
be noted that the autocorrelation function no longer changes continuously
when the parameters change froma + § < 1 toa + f§ = 1 because of the ‘jump’
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in the statistical properties of the model. Formulas (3.9) and (3.1 1) should not be
used to conclude that the autocorrelation function is a constani when o + = 1.
It is surprising that the autocorrelation function fo: the Integrated
GARCH(1, 1) process is also exponentially decreasing. This is another major
difference between the IGARCH(1, 1) model in variance and the random walk
process in mean. The IGARCH(1, 1) process is ‘not persistent’ in volatility at all
in the sense that the autocorrelation function for ¢? dies out exponentially. The
reason for this is probably due to the fact that the effect of a lagged squared error
to the actual conditional variance is exponentially decreasing. Since

a0
ol =w+oel | + ol = +o Yy plel, 3.13)
k=1

w
1-8
that is, in a2 equation, the parameter for 2  is exponentially decreasing with
kasfaras f < 1.

The result here seems to be quite counterintuitive. However, as discussed in
Nelson (1990), for the GARCH(1, 1) model, whether shocks to conditional
variance persist or not depends crucially on the definition of persistence. Re-
searchers usually define volatility persistent by looking at the effect of a shock to
future expectation of the variance process. While the effect of a shock to both the
expectation and the true process is the same for a random walk process in mean,
it is quite different for the IGARCH(1, 1) process in variance. The following
example shows that a shock may permanently affect the ‘expectation’ of a future
conditional variance process, but it does not permanently affect the ‘true’
conditional variance process itself.

Let ¢ be generated from an IARCH(1) process as follows:

& =06, ¢~N(01), of=¢el,. (3.14)

From this IARCH(1) process, the shock to the system at time ¢ comes only from
e,, and this shock will not affect 67 because 2 depends only on the past
information. Since E,(¢2 ;) = E,(621) = &2, a shock at time ¢ to &7, which comes
from a shock to e, will permanently change E,(¢%.) and E,(s2,), ie., the
‘expectation’ of the future squared process and the future conditional variance
process. However, the ‘true’ e, and 62, are determined by the following
formulas:

2 2 2 2 2 2 2,2 2 2 .2
Opak =Etak—1 = €rek~1Cr+k-2+-C+18 > Eiag = CagCrig—1---€p118 .

From here it is clear that the real impact of a shock (a change in ¢2) to 6, an¢
&2, are as follows:

2 2 _ .2 -2 2 2
007+ 1/08 = &l4k—1 = €rp—1€1+k-2 - €415

2 2_,2 ,2 2
0841 /08 = efrxivk—1--- €+ 1>
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i.e., they are stochastic numbers rather than constants. As shown in Nelson
(1990), the above quantities will go to zero almost surely as k — o0, i.e., the real
impact of a shock will converge to zero almost surely. Thas is different from that
of a unit root process in mean. For a unit root process in mean, a shock at time
t will permanently affect both the ‘expeciation’ of the process and the ‘true’
process itself.

The above discussion can be generalized to the situation where the distribu-
tion is not conditional normal, and the conditional variance equation is not
a linear function in lagged squared residuals. For example, if the conditional
heteroskedasticity equation is Ding, Granger, and Engle’s Power-ARCH as
follows:

& =0, o=w(l—a—pf)+ale_,|°+ Pol_,, (3.15)

where ¢, is i.i.d. and, for ease of exposition, it will be assumed that ¢, has mean
zero, variance 62, and E|¢,|® = 1, E|e,|?° = {. Then, by using the same steps as
before, one can show:

o =C0rr(|£x|6s|81-l|é)

B C—I[C(l—a—ﬁ)(l+a+li)_l]“

S TP T T =@ + o 2ap)

p=pila+ PN 3.17)

provided E|g,|?° exists. Formula (3.16) becomes (3.9) when { = 3 which is the
normal case. Similar result still holds even when E|g,|?? goes to infinity. Simple
algebra shows, when 2 + # < 1 but {a? + B2 + 2uf > 1, that

(3.16)

2
pkz[a+< g)[f](ot+[i)" ! (3.18)
When x + f# = | and « > 0, so the model is IGARCH(1, 1) in |¢]° one has
P li'—(%—[l +( - D] 2 (3.19)

However, if x + f =1 but a = 0 so that the conditional variance process is
either a constant or a deterministic step function, then the autocorrelation
function is zero. So it is proved that the conclusion in this section is valid under
a wide class of models and distributions.

Figs. 6-9 plot the simulated sample autocorrelation functions for various
GARCH(l1,1) processes and their corresponding theoretical autocorrelation
functions. ¢ is the constant in variance equation, a is the ARCH parameter, and
b is the GARCH parameter. A total of 35,000 observations are generated with
a conditional normal distribution. The first 15,000 observations are deleted
when calculating the sample autocorrelation function in order to be less affected
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by the initial value, so only 20,000 observations are actually used. The calculated
autocorrelations are sample adjusted. The simulated model for Fig. 6 is
covariance-stationary and the fourth moment exists, so the theoretical autocor-
relation function is precisely defined. It is seen that the sample autocorrela-
tions are very close to the theoretical ones. As predicted by the theory, it
decreases exponentially fast. The first negative sample autocorrelation occurs
at lag 47 and the sample autocorrelations after this lag are not significantly
different from zero. The simulated model for Fig. 7 is also covariance-stationary,
but the fourth moment does not exist, so the theoretical autocorrelation
function is an approximate one. It is still seen that the theoretical autocor-
relation function fits the sample quite well. The sample autocorrelation de-
creases (oo fast to account for the long memory property found in the real
data. Fig. 8 plots the simulated sample autocorrelations and their theoretical
approximations for IGARCH(1,1) process. One can see that the pattern
of the sample autocorrelation funciion is very different from the previous
ones. It decreases like a straight line for aboui the first 400 lags and then
collapses to zero. It is thus seen that the IGARCH(1, 1) process without drift
is not persistent in volatility at all. Fig. 9 shows the sample and theoretical
autocorrelations for IGARCH(1,1) process with drift. The shape of the
simulated sample autocorrelations is quite similar to those covariance-
stationary GARCH(1, 1) processes as shown in Figs. 6 and 7. The theoretical
exponentially decreasing autocorrelation function provides a very good
approximation. It should be emphasized that the simulations are performed for
many different parameter choices, and similar results are found for almost all of
them.

4. Modeling volatility persistence: A new approach

From the discussion above, it is seen that the pattern of the sample autocorre-
lation for various speculative returns discussed in Section 2 is quite different
from that of the theoretical autocorrelation functions given by a GARCH(1, 1)
or IGARCH(1,1) process. Usually the real data has a longer memory in
volatility than the GARCH(1,1) model suggested. The autocorrelation for
&2 from a GARCH(1, 1) process decreases exponentially, while the sample auto-
correlation usually decreases much faster than exponentially at the beginning
and then decreases much slower and remains significantly positive over long
lags. Usually a GARCH(1, 1) process can describe the short-run effect better
than the long-run effect. It is quite clear from the sample autocorrelation that
there are different volatility components that will dominate different time
period. Some volatility components may have a very big short-run effect, but die
out very quickly. Some of them may have a relatively smaller short-run effect,
but they last for a long time period.



200 Z. Ding, C.W.J. Granger | Journal of Econometrics 73 (1996) 185-215

For example, consider the following two-component model:

& = 0,6, e, ~1id. D, 1), 4.1)
ol = wai, + (1 — w)al, 4.2)
ot =gty +(1 —oy)of—y, 4.3)
63 =021 —ay — ) + ay6% 1 + P03, (4.4)

So ¢/ is a weighted sum of two components, 6, and ¢3,, with w and 1 — w as
weights respectively. o7, is an IGARCH(1, 1)-type specification and o2, is
a GARCH(1, 1)-type specification. It should be noted that 67 is not an Inte-
grated GARCH process as will be shown below. Expanding the two variance
components 67, and a2, one has

oh=a ¥ (1—x) Teky, (4.5)
k=1
l—a, — x ,
O'%, = o_zla_;ﬂﬂl + o Z /}5_‘8,._,‘. (4.6)
2 k=1
So
l—a,—f
6} =02l —w) 2
1 -8,
+ Z [wory (1 — oy Y71 + (1 — w)aea 51 e 4.7

k=1

It is then ciear that, when wo, (1 — o, )* ' > (1 — w)a, 571, the first variance
component will have a bigger effect than the second one, and reversing the
inequality reverses this result. If one substitutes a,, 6 into 62, it is readily seen
that ¢, follows a GARCH(2,2) process and the conditional variance equation
becomes

of =621 = whay (1 — oz — fB2) + [way + (1 — whap Je%-
— [wa By + (1 — wi(l — ay)a]el,
+ (1 —oy + Ba)oly — (1 — ay)Br0/l- 5. (4.8)

Interestingly, although the ARCH(2) and GARCH(2) parameters are negative
in the above equation, the conditional variance process is still guaranteed to be
positive provided the parameters in the components representation are positive.
The sum of the ARCH and GARCH parameters in the above equation is

L =wa; +(1 —whay —woy B — (1 — wi(l —a;)a;
+1—ay+B2—(1—ay)f;
=1-(1-wa(l —a; —f)
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which is bigger than zero and less than one when 0 <w < 1,0 < &, < 1, and
0 < «; + f, < 1. Under this assumption, the process is covariance-stationary
with

Eo} = Eo?, = Eo3, = E¢? = 6% (4.9)

The theoretical autocorrelation function for this two-component model is not
available. However, by Eq. (3.4), an exponentially decreasing type autocorrela-
tion function should be expected for this model.

If one fits this two-component model for S&P 500 daily returns with a condi-
tional normal distribution, then the estimated result is as follows:

r, = 0.000463 + 0.1485,_, + &, & =o0,e, e ~ N(0,1), (4.10)
(7.4) (18.2)

ol = 0.7046, + 0.29602,, (4.11)
(39.3)

6% = 0.153¢2 | + 0.8470%_,, (4.12)
(29.0)

63 =0.162x 107 ° 4+ 0.008:% ; + 0.9916%,_,, (4.13)

(1.6) (12.3) (16.84)

Log-likelihood: 56,894.

This model gives a significantly higher likelihood function than a
GARCH(1, 1) model (see Ding, Granger, and Engle, 1993). For the estimation
result here, the volatility-persistent part comes from the GARCH(1, 1)-type
component instead of the IGARCH(I, 1)-type component. In the conditional
variance equation, o7, starts very big (0.704 x 0.153 = 0.1077) in magnitude,
but decays very fast with a decay rate of 0.847, while o3 starts very small
(0.296 x 0.008 = 0.0024) in magnitude, but decays very slowly with a decay rate
of 0.991. So @7, captures the shori-term fluctuation, while 2, models the
long-term, gradual movements in volatility. For the specific parameters esti-
mated here, wot; (1 — o)™ ! > (1 — w)ar, 5 when k < 25. So the short-run
volatility fiuctuation will die out within 25 days or about one month, and the
long-run mean-reversion velatility component will dominate thereafter.

Fig. 10 plots the simulatzd sample autocorrelations for the GARCH(1, 1)
model estimated in Ding, Granger, and Engle (1993). Fig. 11 plots the simulated
sample autocorrelations for the two-component model estimated above.
Clearly, the two-component model gives a much closer sample autocorrelations
than GARCH(1, 1), compared to the real one. The two-component model is also
more persistent in the sense that it has more lags of positive sample autocorrela-
tions.

The intuition behind this two-component model is that one can use two
different variance components, each of them has an exponentially decreasing
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autocorrelation pattern, to model the long-term and short-term movements in
volatility. This can also be seen from the two different slopes in sample auto-
correlations. However, it is also seen that the two-component model is still not
enough to account for the whole autocorrelation pattern, as it might be reason-
able to think that there are many more components in volatility. To generalize
this idea, an N-component model is defined as follows:

& =06, e~iid D(O,I), 4.15)
N N

ol =3 woh, ¥ wi=1, (4.16)
i=1 i=1

o2 =c*(1 — oy — B) + 062, + Biol_,, i=12,...,N, 4.17)

where w; is the weight for volatility component i. Since this model is a very
general one and encompasses the models discussed above as special cases, one
would expect it to give a better approximation to the real data. The sample
autocorrelation, which consists of N different sloped exponentially decreasing
components, will essentially envelope the real one. Similar to the two-compo-
nent model, the N-component model corresponds to a GARCH(N, N) model.
However, when the number of components N is too large, it will be difficult to
estimate «; and f; for such a model. On the other hand, one does not have any
prior knowledge how many variance components there really are. Qur interest is
at the limiting case when N goes to infinity, and a; and f; can take any value in
some region, so the component model will correspond to no GARCH process
having finite number of parameters.

Under this situation it is necessary to assume some distributional forms for
o and § in order to go further. One very general distribution defined on the
range [0, 1], which can be transformed to any other range [a,b], is the Beta
distribution. The density function for a Beta distribution with parameters p,q is
as follows:

xP 11 —x)i!
B(p.qg
where B(p, q) is the Beta function defined as follows:

flx)= 0<x<l, (4.18)

B(p,q) = jl'x”"(l - x)*" dx. 4.19)
0

Beta distribution can have various shapes depending on the parameters p and g.
It includes many other distributions, such as uniform, as special cases. Johnson
and Kotz (1970) give a detailed discussion for this family of distributions. In the
following analysis it will be assumed that § has a form of Beta distribution on
the range [0, 1] with parameters p and q. It will be argued later that the exact
form selected for this distribution function is not of critical importance except
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near f§ = 1. It will also be assumed that « = (1 — f)a*, where a* is from any
distribution defined on the range [0, 1] with a mean u > 0. It then follows that
0<a+ B <1 as required. For mathematical convenience it will be further
assumed that «* is independent of § even though it can be seen later that this is
not necessary. Since Eq. (4.17) can be rewritten in the following form:

1 —o; — B o
2 i i i
- % 1-BL
substituting this into (4.16) one gets
N 1 —o; — /] o
2 |2 i i i 2
o} ,Z:n w; [a =7 + - 8,_1], (4.20)

where L is the lag operator. When N — oo and under the distributional assump-
tions for a and B given above, one has

2 2 ;
Gi=¢C &-1, l=l,2,...,N,

2

dF(oz B+ j ﬁ e2 (dF(o, B)

L

=02 (1 —a*)dF(e*) + Z £2 kfo:*(l — B)B* 1 dF («*, B)

k=

-
i

=1 —p)+ i & f oc*dF(at*)f(l — BB TdF(B)
k=1 )

Blp+k—-1,9+1 ,
& k- 4.21
B(p,q) (g 1 )

The conditional variance process decided by the above formula has the long
memory property since, when k large,

Bp+k—-1g9+1) ql'(p+q@l(p+k-1)

=c¢’(l-p+p Z

M= B(p.q) T TP +a+h
arp+q9,_,_
I @ k a (4.22)

which is a characteristic of a long memory process (see Granger, 1980). We will
refer to this general class of models as Long Memory ARCH model of order
q and denote as LM{g)-ARCH model. It should be noted that independent
research by Baillie, Bollerslev, and Mikkelsen (1996) leads to a closely related
model, which they call Fractionally Integrated GARCH, or FIGARCH model.
The result here appears to provide an interesting argument for how such
volatility processes might arise.

It is seen from Eq. (4.22) that except for at the extreme point of p = 0, the
decay pattern of a, is solely decided by ¢ and so the discussion in Granger (1980)
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applies here. According to Granger (1980), the shape of the Beta distribution is
of little relevance in getting the long memory property of the model except near
B =1, where g determines the slope of the Beta density function in the form
chosen. If the upper limit of the range is changed from one to b, where b is some
quantity strictly less than one, then a; will be dominated by exponentially
decreasing component again and the model will lose the long memory property.
So, as far as a proportion of § is taken from regions arbitrarily close to one, the
model will have the long memory property desired. It is thus seen that the most
important parameter for getting volatility persistence is f instead of o + f.
Important difference also occurs when p takes the value of zero. When p = 0, the
distribution for f collapses to the lower limit which is zero, so each component
follows an ARCH(1) process instead of a GARCH(1, 1) process. The aggregated
conditional variance proccss {4.21) becomes

of = 6*(1 — p) + pe’y,

which, as discussed in Section 3, does not have long memory property even if
u=1

The coefficient for &2, from the Long Memory ARCH model decays hyper-
bolically which is much slower than that of any GARCH models having finite
lags of ARCH and GARCH terms. Table 3 gives some numerical values for
cocfficients at different lags of these two classes of models. The first five columns
are coefficients at lag k for long memory models with different parameters p and

Table 3

Coefficients at lag k (a,) for long memory and GARCH(l, 1) models

Lag k p=1 p=2 p=3 r=4 p=>5 p=075 a=01
q=01 q=02 q=03 q=04 q=05 q =025 b=09

1 0.09091 0.09091 0.09091 0.09091 0.09091 0.25000 0.10000
2 0.04329 0.05682 0.06342 0.06734 0.06993 0.09375 0.09000
3 0.02793 0.04058 0.04787 0.05261 0.05594 0.05469 0.08100
4
5

0.02044 003122 0.03799 0.04266 0.04607 0.03760 0.07290
0.01603 002518 003122 003555 0.03880 0.02820 0.06561
10 0.00752 001227 001567 001824 0.02028 0.01166 0.03874
5 0.00484 0.00855 0.01191 001525 0.01877 0.00691 0.02288

20 0.00353 0.00605 0.00819 0.01019 0.01219 0.00482 0.01351
50 0.00129 0.00202 0.00249 0.00283 0.00308 0.00153 0.00057
100 000060  0.00088 0.00101 000107 0.00109 0.00065 0.00000
150 0.00038 000054  0.00060 0.00061 0.00059 0.00039 0.00000
200 0.00028 0.00038 0.00041 0.00041 0.00039 0.00027 0.00000
500 0.00010  0.00013 0.00012 0.00011 0.00010  0.00009 0.00000
1,000 0.00005 0.00006 0.00005 000004  0.00003 0.00004 0.00000
1,500 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00000
2,000 0.00002 0.00002 0.00002 0.00002 0.00001 0.00002 0.00000
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q. They all start at the same coefficient at lag 1, but after that they differ from
each other. Column 6 is also a long memory model with p = 0.75 and g = 0.25,
so that p + g = 1. The model is of form (4.27) which will be discussed below. The
coeficient at lag 1 is very big compared to the first five columns. However,
starting from lag 2, the coefficient decreases much faster than that of the first five
models. The last column is the coefficients at different lags for an IGARCH (2, 1)
model with ARCH parameter 0.1 and GARCH parameter 0.9. Comparing this
model with the long memory models, it can be seen that the coefficients for this
model decrease to zero much faster. The coefficients after lag 100 are all zero to
the fifth decimal point, while all the long memory models still have a coefficient
around 0.00002 at lag 2,000.

Since z,? _, a = 1, which is the same as an IGARCH process, the Long
Memory ARCH model provides a mechanism to distribute more weight on the
far past shocks which enables the model to have the long memory property
desired. Several special cases arise from (4.21). When u = 1, the distribution for
o will put all its probability mass on its upper limit, i.e., ¢; = 1 — f§;, so each
component follows an IGARCH(l, 1) type process and one has

oo S Pt elrip+k—-1 ,
T Tpprqrk) R

which also has the property that the coefficients for &2, sum to 1. When
p +q =1, one has

(4.23)

© (k- q)
2= a%(1 - L L
o= -0 Y FT TR D

= a1 —u) +p(1 — (1 = L))e?, (4.24)

which is the same as
(1 - L)%? = (% - 1)(02 —a62) + ake? - 1). 4.25)

When 0<gqg <3, & is stationary, the mean exists and is equal to @2,
Ec? = Eo? = 6. So the right-hand side is a white noise and &7 is an I(g) process.
If further conditions are imposed so that the fourth moment of g, exists, then the
theoretical autocorrelation function for &2 from this model is

rt—q rk+gq zl"(l—q)
'g rk+1-g9 r

which is the same as an I(g) process in mean. Finally, when u = 1 in (4.25), one
gets

P = corr(e?, el 4) = k321, (4.26)

(1 — L)%’ = al(e? — 1), (4.27)
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which is the long memory model proposed by Granger and Ding (1995) and is
also a special case of the FIGARCH model of Baillie, Bollerslev, and Mikkelsen
(1996).

The above discussion in &? is solely for convenience. It is not difficult to
generalize to other cases. For example, if each volatility component follows
Ding, Granger, and Engle’s Power-ARCH:

g = 0,8, e ~iid. D(0,1), (4.28)
N N

al=Y woelh Y wi=1, (4.29)
i=1 i=1

oy =0a’(1 —o; — B)) + ole—11%/4 + Bich -1, i=12,..,N, (4.30)

where 4 = E|e,|® and 4 is a positive number to be estimated from the data set.
Then, under the samc assumption as before, one has

X Bp+k—1,q+1)
ol = a®(1 —

' ( WK k;l B(p.q)
The discussions for a7 or &2 above are all applicable to ¢? or || here. |¢|° will
have the long memory property discussed above. When p + q = 1,|¢/|° will have
a theoretical autocorrelation function as in (4.26). If § = 1 is the true data-
generating process, then the absolute returns will also have the properties.

In order to examine the practical relevanc: of this new class of models, various
long memory models with alternative distributions are estimated for S&P 500
daily returns using the estimation by simulation method discussed in Ding
(1994). [ Interested readers are referred to Ding (1994) for a detailed discussion of
simulation and estimation for this general class of Long Memory ARCH
models.] The finally preferred model and its estimation result is as follows:

r, = 0.000608 + 0.103¢,-, + &, & = aG,¢,,
(13.3) (16) 4.32)

S Blp+k—1l,q+1)

o=y

k=1 B(p.q)

L&~ kl%/A. 431

1’ 1’

| & -kl/4, (4.33)

where ¢, has a double exponential distribution and 4 = Eje,| = \/ 1. The esti-
mated p equals 5.41, with a ¢-statistic 4.93, and the estimated q equals 0.597, with
a t-statistic 8.72. The likelihood function is 57,226, which is much hig iier than
that of the GARCH(l, 1) model and the two-component model. It shouid aiso
be noted that the parameters used in this long memory model is less than the
GARCH(1, 1) model and the two-component model. Fig. 12 plots the sample
autocorrelations for S& P 500 daily returns and simulated absolute returns using
the parameters estimated above. A total of 200,000 variance components are
generated using f§; from the Beta (5.41,0.597) distribution and o; = 1 — ;. It can
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be seen that for the first 500 lags the two sample autocorrelations move very
closely. From lag 500 to lag 2,500, the simulated data has relatively higher
sample autocorrelations than the real data. However, compared with any other
models, this model still gives the best approximation to the reality.

5. Conclusion

This paper gives new evidence of long-term dependence that exists in specu-
lative returns series. Five speculative returns series from different places and
different markets are examined. It is found that the absolute returns and their
power transformations all have long, positive autocorrelations. Usually this
property is strongest for the absolute returns. One exception is the exchange rate
return which has the strongest property when taking to power 3 (this property
will be examined in more detail in a later paper). The theoretical autocorrelation
functions for various GARCH(1, 1) models are derived and found to be expo-
nentially decreasing, which is rather different from the sample autocorrelation
function for the real data. A general class of long memory models that has no
memory in returns themselves, but long memory in absolute returns and their
power transformations is proposed. The issue of estimation and simulation for
this class of models is discussed. The estimated results show that this model gives
a much better description for the real data. The Monte Carlo simulation also
shows that the theoretical model can mimic the stylized empirical facts strikingly
well.

Appendix

We first derive the autocorrelation functions for covariance-stationary
GARCH(1, 1) model under conditional normal distribution.

When o + f < 1, the GARCH(1, 1) process can be represented in its asymp-
totic form as follows:

a? = 6*(1 —a — B) + ac?, + foiy, (A1)

where ¢? is the unconditional variance of ¢,. Rearranging the above equation
one gets

& —o? =+ Py — %) — Poi-i(e1 — 1) + ol(el — 1). (A2)

Multiplying both sides of the above equation by (2., — ¢?2) and taking expecta-
tion one has

71 = (@ + f)yo — 2BEei,, (A.3)
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where y, = E(e? — 6°)(g%-, — 6?) is the covariance between &2 and 2, and
vo = E(g’-, — 6%)? is the variance of ¢2_,.

If it is further assumed 30® + 2af + B2 < 1, so that the fourth moment of
& exists, then dividing both sides of (A.3) by ye, which is finite, gives

p1 =a+ B —2BEai 1 /70. (A4)
Also by definition

10 = E(¢? — 6%)? = 3Eg} — 04, (A.5)
so one has

Eof = (70 + 0%)/3. (A.6)
Substituting (A.6) into (A.4) gives

b=t =21 sk 4 30 (A7)

From the conditional variance equation one can get

_o*(l—a— )1 + 2+ f)

4

Eoi-y === (3a® + 208 + B?) A8)
Substituting this into (A.S), one has

2(1 — 2B — B?)
— 4_ 4 _ 4

yo=3E6 —6°=0 1= (2 + 228 + )’ (A9)
so that

o* 1 —(3a%+2ap + p?)

- = A.10

Yo 2l-2ap— ) (419
Substituting this into (A.7) and some simple algebra shows

a’p
Pn-“+m- (A.11)

Combining this with (34), one has the autocorrelation function for
GARCH(1, 1) process, when the fourth moment exists, as follows:

2
p,‘=<a +T3°i—ﬁ-ﬁ-—_——ﬂ—2-)(a+ﬁ)"“. (A.12)

Much of the above discussions are valid even if the fourth moment does not
exist. Assume now « + < 1, but 30® + 2u + 2 = 1, so & is covariance-
stationary, but its fourth moment does not exist. Under this assumption,
Eq. (A.3)still holds but y,,7,, and Ea;*. , will go to infinity. However, the sample



Z. Ding, C.W.J. Granger [ Journal of Econometrics 73 (1996} 185-215 211

autocorrelation functions are always defined. By Jensen’s inequality, one has
Yo..—1 > V1.c and yo,,—1 > Ea{- |, where yo, = E(¢2 — ¢%)? is the variance of &2
and y,, = E(? — 62)(e2 1 — 6?) is the first-order autocovariance function of
¢?. There is a time subscript for the variance and autocovariance function
because they are usually changing with time when the fourth moment of ¢, does
not exist. If we define the time-varying first-order autocorrelation as usual,

Pre = Y1.fPou-1> (A.13)
then
Pra=0+ B —2BEo’ 1/v0.4-1- (A.14)
From the conditional variance equation one has
Ea} = o*(1 — a — B)(1 + o + B) + (322 + B2 + 2¢P)Ec} |
=o*(1 —a— B)1 + o + B)[1 + (3% + B2 + 2ap)
+ -+ + (3a? + B2 + 2aB)'Eog]. (A.15)

Assume, without loss of generality, that Ec§ = 1, then
t
Eol =o*(l —a—B)1 +a+ B) Y (o + p% + 20p). (A.16)
i=0
So substituting (A.5) and (A.16) into (A.14) gives

t—1
o*(l —a—B)1 +o+p) Y (Bo? + p% + 2ap)
pru=a+p—28 =
3o*(l —a— Y1 +a + pB) ‘Z (3a? + B2 + 2aB) — o*

-1

=a+§ﬁ—§ﬁ[3(l —rx-lf)(l+a+ﬁ)‘2

i=0

-1
(30? + B2 + 2ap) — l] ,
(A.17)

which is changing with time. If it is assumed that the process starts at a very long
time ago, so that the last term can be ignored, then

pr o+ 3P, (A.18)
and the autocorrelation function at lag k is approximately
P @+ 3B+ By (A.19)

It should be noted that this expression is identical to (A.12) when 3a2 + 2xf +
B? =1, ie., the autocorrelation function changes continuously as far as the
GARCH(1, 1) model is covariance-stationary.
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The situation is quite different when the covariance-stationary assumption is
removed. Assume

& =06, €~iid. N(O,1), 62 =asZ,+ (1 —a)c’,, (A.20)
and 64 = 1, a constant. Then

g2 = (el ; + (1 — w6l ))el, (A.21)
and in general it is not difficult to get

Ee? =1,

Ect = (1 + 2a*)Eod = (1 + 2a3),

Ee2el i =(1 4+ 20)Est = (1 + 20(1 + 222)' 7K,

Ee’Ee’ . = (Eol )’ = |,

Vet = 3(1 + 20%)*Ee* , — (E62 )% = 3(1 + 223) — 1,

Ver, = 3Eat; — (Ba} ()? = 3(1 + 222) % — 1.

So by definition the time-varying autocorrelation function becomes

_Eelel  —EelEel, _ (1 +20)(1 + 202 — |
P VATATE 3+ 202 — 1) /30 + 223 1)
(A.22)
When t > k > 0 and « # 0, one has approximately
P = I+2 (1 + 2x2)7%2, (A.23)

It is seen that, like a GARCH(l, 1) process, the autocorrelation function de-
creases exponentially. In the extreme case of « = 0, so that 67 = 62, = -+ =
o? = g2, i.e., the variance is constant over time and there is no heteroskedasticity
in the series concerned, then (A.22) gives p, = 0 as might be expected. On the
other extreme, if « = 1, so that 67 = &¢2_,, then (A.23) gives

Pra=+/B T —1)/3 - 1), (A.24)
Wher t > k > 0, (A.24) becomes
P = 37K (A.25)

and again it is exponentially decreasing.
Similar results can be derived for the IGARCH(1, 1) process with a drift.
Assume now

6l =w+agk | + (1 —w)cl, (A.26)
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and 62 = w, a constant. Then
Ee?=Ew+at, +(1 —a)st)=w+EeZ,=( + Do (A.27)
and
Ec} = E[w? + a2t |, + (1 — 0)®ct | + 2wael
+20(1 — a)o | + 20(l — a)e2 02 ,]
= w? + (1 + 222)Ec , + 2wEe% ,
=w?+ (1 + 2% [w? + (1 + 2a®)Edl. , + 2wEe?.,] + 2wEe™ ,
=w? + 031 + 222) + 021 + 20%)®> + --- + 0*(1 + 20*)'Ec}
+ 2wE6? | + 20w(l1 + 20%)Ea2 , + -+ + 2w(1 + 2x2) " 'E6?

= w? Zt: (1 + 2a?) + 2w i i1 + 2028 (A.28)

i=0 i=1
When o # 0, (A.28) becomes

_ wz(l + 202yt — 1 +a)2(1 + 202t — (1 4 20%) - 202t

4
Ea, 202 24

When ¢ is large, one has approximately

4 o’ 1 23t+1
Eo; zm 1+&—2- (1 + 2a*)'+ 7. (A.29)

By the definition of an autocovariance function, one has
Ykt = Ee?el . — Ee’Eel s

= kwEe? i + (1 + 20)Ec} , — (wk + E6?.;)Ec?

= (1 + 20)Eoi—; — (Eal¢)% (A.30)
So

(1 + 20)Ea;; — (Eal )2
" J/DEq; — (Bo})*1[3E0;r — (Eo7-s)']

(1+20)

= [7(1 + 2«2)""“<1 +%)—(t—k + 1)2]
-1/2
x[i:?(l + 2a2)'“(1 +$) -+ 1)2] :

3 2y—-k+1 l 2 -2
x| 57 (1 +20%) L+ )= ~k+1) . (A31)

P
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When t > k > 0, one has approximately

oo~ +32°‘ (1 + 2a2)7%2, (A32)

which satisfies 0 < p, < 1 when 0 < o < 1. Comparing (A.23) with (A.32), it is
seen that the autocorrelation functions for IGARCH(1,1) models with or
without a drift are the same.

When o = 0, the conditional variance process becomes a deterministically
increasing step function independent of &,, which further gives us that ¢, is an
independent process with deterministically increasing variance. No autocorrela-
tion should be expected for &2 under this situation. The following algebra
confirms this. Substitute a = 0 into (A.28), one gets

Eol = w?(t + 1) + 0?(t + Dt = 0*(t + 1)%, (A.33)
substituting (A.33) into (A.30), one has
e = (1 + 20)Eof 4 ~ (E6?1)* = 0?(t + 1)? — w?(t + 1)* = 0.

So, as for the IGARCH(1, 1) process without a drift, the autocorrelaticn func-
tion is zero when the lagged error term does not enter the conditional variance
process.
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