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Abstract 

This paper extends the work by DinE, Granger, and Engle (1993) and further examines 
the long memory property for various speculative returns. The long memory property 
found for S&P 500 returns is also found to exist for four other different speculative 
returns. One significant difference is that for foreign exchange rate returns, this property 
is strongest when d = 1/4 instead of at d = I for stock returns. The theoretical autocorre- 
lation functions for various GARCH(I, 1) models are also derived and found to be 
exponentially decreasing, which is rather different from the sample autocorrelation 
function for the real data. A general class of long memory models that has no memory in 
returns themselves but long memory in absolute returns and their power transformations 
is proposed. The issue of estimation and simulation for this class of models is discussed. 
The Monte Carlo simulation shows that the theoretical model can mimic the stylized 
empirical facts strikingly well. 
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tion; Aggregation; Long :memory ARCH model 
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1. Introduction 

With the availability of  high-frequency long time series from returns of  
speculative asset, much research has been devoted to the study of  long-run 
behavior of  firlancial data. A common  finding in .much of  the empirical literature 
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is that the returns themselves contain little serial correlation which is in agree- 
ment with the efficient market hypotheses. Howeve,, it ix also found that the 
absolute returns and their power transformations are highly correlated. A sys- 
tematic study of this can be found in Taylor (1986). These empirical regularities 
culminated by the publication of Ding, Granger, and Engle (1993). In that paper, 
they investigate the autocorrelation structure of Ir, I d, where I r, I is the daily S&P 
500 stock market returns, and d is a positive number. It is found that Ir, I has 
significant positive autocorrelations at over 2,700 lags with a series of 17,054 
observations. Similar results are also found for other values of d in Ir, I ~. This 
property is found to be strongest when d = 1 compared to both smaller or larger 
d values. These properties are examined for several other long speculative asset 
returns series, including returns for the Japanese stock market index Nikkei, 
foreign exchange rate returns for the Deutschmark with the US dollar, indi- 
vidual stock returns for Chevron, and minute-by-minute stock returns for 
a Japanese food company, Ajinomoto. The results show the long memory 
property found for S&P 500 returns in Ding, Granger, and Engle (1993) also 
exist here. One significant difference is that for foreign exchange rate returns, 
this property is strongest when d = ¼ instead of at d ffi 1 for stock returns. 

It is also quite c o m m ~  view that the volatility persistence is best represented 
by the fact that the estimated ARCH and GARCH parameters in a GARCH 
model sum to very close to one. So the Integrated GARCH(1, 1) model comes 
out very naturally to model the volatility persistence (see Engle and Bollerslev, 
1986). However, in Section 3, we prove that the autocorrelation function for an 
IGARCH (1, l) process is exponentially decreasing and is very different from the 
sample autocorrelation function found for various speculative returns in Section 
2. In Section 4, a new general class of models that has no memory in returns 
themselves but long memory in absolute returns and their power transforma- 
tions is proposed. The relationship between this class of models and other 
models is also discussed. E~timation and simulation results for S&P 500 stock 
market returns using this class of models are presented. The Monte Carlo 
simulation shows that the theoretical model can mimic the stylized empirical 
facts strikingly well. Section 5 concludes the analysis. 

2. Autocorrelation analysis of various financial ~.ime series 

In Ding, Granger, and Engle (1993), the sample autocorrelation function for 
S&P 500 daily stock market returns and their transformations are presented. 
There, a long memory property for Irzl 4 is established and is found to be 
strongest for d = 1 compared to other values of d. For the convenience of later 
reference and comparison, Fig. 1 plots the sample autocorrclations for r,, It, I, 
and r, 2 of S&P 500 stock market returns up to lag 2,500. As pointed out by Ding, 
Granger, and Engle, the sample autocorrelation function for absolute returns 
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and squared returns remains significantly positive for all these lags, while most 
sample autocorrelations for r, are not significantly different from zero. The 
sample autocorrelations for I rtl are consistently higher than that for r 2. It is seen 
that the sample autocorrelation function decreases very fast at the beginning, 
and then decreases very slowly and remains significantly positive, which is 
different from an exponentially decreasing function. Figs. 2 to 5 plot the sample 
autocorrelations for four other speculative returns: daily returns for Japanese 
stock market index Nikkei from 1970 to 1992 with 5,594 observations; daily 
foreign exchange rate returns for the Deutschmark with the US dollar from 
January 1971 to March 1992 with 5,311 observations; daily individual stock 
returns for Chevron from July 1962 to December 1991 with 7,420 observations; 
and minute-by-minute (not necessarily equal time interval) stock returns for 
a Japanese food company, Ajinomoto. from April 3, 1989 to April 30, 1992 with 
a total of 25,099 observations. It is clearly seen that the striking regularities 
found for S&P 500 also exist for all these four different speculative returns. The 
patterns of the sample autocorrelations are very similar to each other. Fig. 3 
also plots the sample autocorrelation functions for the absolute foreign ex- 
change rate returns raising to power ~. It is found that, different from that of 
stock returns, this property is stronger at ¼ than any other values for foreign 
exchange rate returns. 

Table 1 gives the summary statistics for the above five financial series. The 
mean returns for all five series are very close to zero. The returns for S&P 500, 
Nikkei, and DM/US are negatively skewed, while the returns f')r the two 
individual stocks, Chevron and Ajinomoto, are positively skewed. All five 
returns are leptokurtic in the sense that the kurtosis for all these returns are 
bigger than that of a normal distribution, which is 3. The normality test refers to 
the Jarque-Bera normality test, and the test statistics show that all the five 
return series are not normal. 

Table 2 further gives the numerical values of the sample autocorrelations for 
rt, Ird, and r 2 at lags 1, 2, 3, 4, 5, 10, 100, 200, and 500 for these five returns.The 
last column {Neg. lag) gives the lag at which the first negative sample autocorre- 
lation occurs for the corresponding series. The numbers in parentheses in the 
first column are two times the standard errors of the sample autocorrelation for 
the corresponding series if they are not correlated and have finite variances. It is 
seen that for the return series rt only one Ifor exchange rate return), or two {for 
S&P 500, Nikkei, and Chevron), or at most four (f~r Ajinomoto) lags of sample 
autocorrelations of those shown are significantly different from zero. However, 
Ir, I and r z have many lags of significantly positive sample autocorrelations. 
Usually the number of positive sample autocorrelations is increasing with the 
sample size. For various values of d {not shown here), Ir, I a has the largest 
autocorrelation when d = 1, except for foreign exchange rate returns, which has 
the strongest sample autocorrelation when d = ¼. This last property, the power 
transformation has the strongest autocorrelation when d = 1 for S&P 500 and 
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other stock returns, has been referred to as the Taylor effect by Granger and 
Ding (1995). Their research gives strong evidence that the absolute returns have 
a conditional exponential distribution and pairs of absolute returns have a joint 
exponential distribution. The result is more significant if the outliers outside the 
four standard deviations are reduced to four standard deviations. They also 
showed that the Taylor effect is a consequence of this distribution. 

3. The autocorrelation functions of ARCH and GARCH processes 

The stylized empirical regularities discussed in Section 2 pose a challenging 
task for econometricians to develop models to describe the phenomena. Al- 
though the Taylor effect has been considered by Granger and Ding (1995), the 
problem of modeling the long memory behavior of the absolute returns or the 
squared returns remains largely unsolved. Engle (1982) proposed the ARCH 
model to forecast the variance conditional upon past information. The condi- 
tional variance is a linear function of past squared residuals. The ARCH(p) 
process is defined as follows: 

et = txtet, et ~ i.i.d. D(O, 1), 

P 

a 2 = ~o + ~ ~tieLi. (3.1) 
i = l  

The ARCH model has the property that the residuals themselves, here ~r, are not 
correlated with each other since et is i.i.d, over time and is independent o f a ,  But 
the squared residuals, here ~2, are correlated with each other over time and are 
forecastable. It follows that led a or Ir, I d, where d is a positive number, are also 
correlated with each other and are largely forecastable. So the ARCH model 
captures some of the empirical facts found in Section 2. 

As illustrated by the plots in Section 2, the absolute returns or squared returns 
are significantly correlated over long lags. This suggests that the data might 
require a lot of ARCH lags in order to be fully described. Bollerslev (1986) 
generalizes the ARCH model by adding lagged at in the conditional variance 
equation. So the GARCH model is as follows: 

P q 

= //jtr,_~. (3.2) 
i = 1  j = !  

The way the GARCH term is introduced, and the reason the GARCH model is 
so popular are largely due to its convenience in implementation. One can find its 
counterpart in Box-Jenkins' ARMA technique in modeling the mean. 

Taylor (1986) gives the autocorrelation functions for e~ of an ARCH(p) 
process, and shows that it follows the same Yule-Walker equation for the 



Z. Ding. C W.Z Granger/Journal o f  Econometrics 73 (1996) 185-215 193 

associated zero-mean AR(p) process provided the fourth momen t  of e, exists, 

/1 

Pk = ~ ~ i P k - i .  (3.3) 
i - I  

Bollerslev (1986) derives the autocorrelat ion functions for ~:2 of a G A R C H ( p , q )  
process under the same condit ion as above and shows 

Pk=  ~, ~PlPk-i, k >>-q + I, (3.4) 
i = l  

where m = max(p,q), and q~i = ~i + Pi for  i = 1 . . . . .  m, ~i = 0 for  i > p, and 
f i  = 0 for i > q. The above formula is again the same as the Yule-Walker  
equat ion for a zero-mean AR(m) process. Unfortunately,  no explicit result is 
available for G A R C H ( p , q )  model  when k ~< q. 

In empirical research, the most  often used G A R C H  model is G A R C H ( I ,  1). It 
will be interesting to see the theoretical autocorre la t ion functions for 
GARCH(1 ,1 )  process. For  ease of  exposition, it will be assumed that  the 
distribution is condit ional  normal  and e.r is covariance-s ta t ionary so that  
~t + [ / <  !. These assumptions  will be removed later, and it will be shown that  
similar results still hold .Under  the above assumptions the G A R C H ( I ,  1) process 
can be represented in its asymptot ic  form as follows: 

o,  ~ = ~r2( l  - ~ - 1/) + ~ , ~ -  1 + / ~ 0 - ,  ~- , ,  ( 3 .5 )  

where tr 2 is the uncondit ional variance of ~.,. Rearranging the above equat ion 
one gets 

~:~ _0-2 = (~ + / ~ ) ( ~ : L t - a 2 ) - f ~ 0 - L , ( e ~ - t  - 1 ) +  0 -~ (e~-  1). (3.6) 

Multiplying both sides of the above  equat ion by (~2_ ~ _ 0 . 2 )  and taking expecta- 
tion one has 

~'t = (~t + fl)~'o - 2 f l E a ,  ~- , ,  t3.7) 

where ~,, = E0:2 - a z ) ( e ,  z_ ~ - tr 2) is the covariance between e, 2 and ~L ~, and 
~'o = E(~ 2_ , - t rz )  z is the variance of ~2_ t. 

If it is further assumed that  3~t 2 + 2~tfl + f12 < 1, so that  the fourth momen t  of  
~t exists, then it is shown in Bollerslev (1988) that  

~t2fl 
Pt = ct + 1 - 2~tfl - f12- (3.8) 

Combining  this with (3.4), one has the autocorrelat ion function for 
G A R C H ( I ,  1) process, when the fourth moment  exists, as follows: 

Pk -- ~ + 1 - 2 - ~ - - / ~ 2  (~ + fl)k- 13.9t 
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For the convenience of la:er reference, a detailed derivation of the above formula 
is given in the Appendix. It should be noted that Pk = 0 when ct = 0, which is not 
surprising. When x = 0, the conditional variance process is a deterministically 
time-varying process independent of ct, so Pk- -0  is what one should have 
expected. In fact, much of the above discussions is valid even if the fourth 
moment does not exist or is infinite. Assume now ~ + f l <  1, but 
3~t 2 + 2atfl + f12 ~> 1, so e, is covariance-stationary, but its fourth moment does 
not exist or is infinite. Under this assumption, Eq. (3.7) still holds, but ~:t, 7o, and 
Ea~_ 1 are time-dependent and will go to infinity. However, the sample autocor- 
relation functions of any observed time series are always defined. By using 
Jensen's inequality, it is shown in the Appendix that if the process starts a very 
long time ago, then the first-order autocorrelation function is approximately as 
follows: 

I 
Pt ~ ~ + ~fl, (3.10) 

and the autocorrelation function at lag k is approximately 

Pk ~ (~ + ½fl){~ + fl)k-I. (3.11) 

From this it is clear that the autocorrelation function still decreases expo- 
nentially. It should be noted that this expression is identical to (3.9) when 
3~ 2 + 2~fl + f12 = 1, i.e., the autocorrelation function changes continuously as 
long as the GARCH(I,  1) model is covariance-stationary. 

It is also commonly found in empirical research that the sum of the estimated 
ARCH and GARCH parameters in a GARCH(I,  1) model is very close to one. 
For  example, Taylor (1986) estimated GARCH{I, 1) models for 40 different 
financial time series, The results show that for all but six of the 40 series the 
estimated value of ~ + fl is greater than or equal to 0.97. In Ding, Granger, and 
Engle (1993), the estimated value of • + fl for daily S&P 500 returns is 0.997. 
This regularity is widely considered to be a characteristic of volatility persist- 
ence. The Integrated GARCH(I,  1) model, which restricts cx + fl = 1, is then 
introduced by Engle and Bollerslev (1986) to model long-run volatility persist- 
ence. The IGARCH(I,  1) model is always related to the random walk process in 
mean. However, Nelson (1990) shows that IGARCH(1, 1) process without drift 
is strictly stationary and goes to zero almost surely even though it is not 
covariance-stationary. 

More interestingly, using the similar procedure as before, it is shown in the 
Appendix that the approximate autocorrelation function for e 2 from an 
IGARCH(I,  1)-type of model is as follows: 

Pk = ½(1 + 200(1 + 2,t2) -k/2, • # O. (3.12) 

The result is the same no matter whether there is a positive drift or not. It should 
be noted that the autocorrelation function no longer changes continuously 
when the parameters change from ct + fl < I to ~t + fl = 1 because of the 'jump' 
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in the statistical properties of the model. Formulas (3.9) and (3. ! 1) should not be 
used to conclude that the autocorrelation function is a constan-~ when u + fl = 1. 
It is surprising that the autocorrelation function for the Integrated 
GARCH(1, 1) process is also exponentially decreasing. This is another major 
difference between the IGARCH(1,1) model in variance and the random walk 
process in mean. The IGARCH(1, 1) process is 'not persistent' in volatility at all 
in the sense that the autocorrelation function for ~2 dies out exponentially. The 
reason for this is probably due to the fact that the effect of a lagged squared error 
to the actual conditional variance is exponentially decreasing, Since 

~2 = so ÷ ~2-1 +/~2_ I = 1 - ill + ~ /~k-i ~2_k ' 13.13) 
k = l  

that is, in ~2 equation, the parameter for ~2_k is exponentially decreasing with 
k as far as p < 1. 

The result here seems to be quite counterintuitive. However, as discussed in 
Nelson (1990), for the GARCH(I,  1) model, whether shocks to conditional 
variance persist or not depends crucially on the definition of persistence. Re- 
searchers usually define volatility persistent by looking at the effect of a shock to 
future expectation of the variance process. While the effect of a shock to both the 
expectation and the true process is the same for a random walk process in mean, 
it is quite different for the IGARCH(1, 1) process in variance. The following 
example shows that a shock may permanently affect the 'expectation' of a future 
conditional variance process, but it does not permanently affect the 'true" 
conditional variance process itself. 

Let c, be generated from an IARCH(I) process as follows: 

~! = alel, el "-~ N(0,1), 0 "1 = ~2_1. (3.14) 

From this IARCH(I) process, the shock to the system at time t comes only from 
et, and this shock will not affect o 2 because 0.2 depends only on the past 
information. Since E,(~2+k) = Et(0.2+k) = ~2, a shock at time t to t~, which comes 
from a shock to e ,  will permanent ly  change E,(~+k) and Et(rY2+k), i.e., the 
'expectation" of the future squared process and the future conditional variance 
process. However, the 'true' E,2+k and #,2÷k are determined by the following 
formulas: 

From here it is clear that the real impact of a shock (a change in ~2) to 02+~ anc 
t~2+k are as follows: 

= = eD -, . . .  

a . +Ua 2 ...e2+ - -  e l + k e z + k  - 1  i ,  
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i.e., they are stochastic numbers rather than constants. As shown in Nelson 
(1990), the above quantities will go to zero almost surely as k --* oo, i.e., the real 
impact of a shock will converge to zero almost surely. This is different from that 
of a unit root process in mean. For a unit root process in mean, a shock at time 
t will permanently affect both the 'expectation' of the process and the 'true' 
process itself. 

The above discussion can be generalized to the situation where the distribu- 
tion is not conditional normal, and the conditional variance equation is not 
a linear function in lagged squared residuals. For example, if the conditional 
heteroskedasticity equation is Ding, Granger, and Engle's Power-ARCH as 
follows: 

*t = a,e,, a# = eo~(l -- • --/~) + ~l~,-tl ~ + Pod-l ,  (3.15) 

where e, is i.~.d, and, for ease of exposition, it will be assumed that et has mean 
zero, variance a 2, and Ele ,  I ~ = 1, Ele ,  I 2~ = ~. Then, by using the same steps as 
before, one can show: 

pl = corr(le, I ~, le,- t l ~) 

=~+~_fl (~l[(~l- -~-- f l ) ( l+.~+fl )  1-' - -  • - - - ( ~ - T + / ~ 2 + 2 x / ~  ) - 1  , (3.16) 

Pk = Pt(~ +/ j )k-  x (3.17) 

provided Ele, I 2~ exists. Formula (3.16) becomes (3.9) when ~ = 3 which is the 
normal case. Similar result still hol0s even when E levi 2~ goes to infinity. Simple 
algebra shows, when • +/~ < ! but ~ 2  +/~, + 2~/~ > 1, that 

pk ~ [ ~  + ( 1 -  ~)/TI(~ +/~)k- ' .  (3.18) 

When ~ +/~ = 1 and ~ > 0, so the model is iGARCH(I,  1) in [e,[ ~, one has 

1 + ( ~ -  1)~ 
['1 + ( ~ -  I)o~2] -k/2. (3.19) 

However, if ~ +/~ = 1 but • = 0 so that the conditional variance process is 
either a constant or a deterministic step function, then the autocorrelation 
function is zero. So it is proved that the conclusion in this section is valid under 
a wide class of models and distributions. 

Figs. 6-9 plot the simulated sample autoeorrelation functions for various 
GARCH(1,1) processes and their corresponding theoretical autocorrelation 
functions, c is the constant in variance equation, a is the ARCH parameter, and 
b is the GARCH parameter. A total of 35,000 observations are generated with 
a conditional normal distribution. The first 15,000 observations are deleted 
when calculating the sample autocorrelation function in order to be less affected 
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by the initial value, so only 20,000 observations are actually used. The calculated 
autocorrelations are sample adjusted. The simulated model for Fig. 6 is 
covariance-stationary and the fourth moment exists, so the theoretical autoeor- 
relation function is precisely defined. It is seen that the sample autocorrela- 
tions arc very close to the theoretical ones. As predicted by the theory, it 
decreases exponentially fast. The first negative sample autocorrelation occurs 
at lag 47 and the sample autocorrelations after this lag are not significantly 
different from zero. "i'he simulated model for Fig. 7 is also covariance-stationary, 
but the fourth moment does not exist, so the theoretical autoeorrelation 
function is an approximate o.ne. It is still seen that the theoretical autocor- 
relation function fits the sample quite well. The sample autocorrelation de- 
creases too fast to account for the long memory property found in the real 
data. Fig. 8 plots the simulated sample autocorrelations and their theoretical 
approximations for IGARCH(1,1) process. One can see that the pattern 
of the sample autocorrelation function is very different from the previous 
ones. It decreases like a straight line for about the first 400 lags and then 
collapses to zero. It is thus seen that the IGARCH(I, 1) process without drift 
is not persistent in volatility at all. Fig. 9 shows the sample and theoretical 
autocorrelations for IGARCH(I, 1) process with drift. The shape of the 
simulated sample autocorrelations is quite similar to those covariance- 
stationary GARCH(I, 1) processes as shown in Figs. 6 and 7. The theoretical 
exponentially decreasing autocorrelation function provides a very good 
approximation. It should be emphasized that the simulations are performed for 
many different parameter choices, and similar results are found for almost all of 
them. 

4. Modeling volatility persistence: A new approach 

From the discussion above, it is seen that the pattern of the sample autocorre- 
lation for various speculative returns discussed in Section 2 is quite different 
from that of the theoretical autocorrelation functions given by a GARCH(I, 1) 
or IGARCH(I, 1) process. Usually the real data has a longer memory in 
volatility than the GARCH(1, 1) model suggested. The autocorrelation for 
t~ 2 from a GARCH (1, 1) process decreases exponentially, while the sample auto- 
correlation usually decreases much faster than exponentially at the beginning 
and then decreases much slower and remains significantly positive over long 
lags. Usually a GARCH(1, 1) process can describe the short-run effect better 
than the long-run effect. It is quite clear from the sample autocorrelation that 
there are different volatility components that will dominate different time 
period. Some volatility components may have a very big short-run effect, but die 
out very quickly. Some of them may have a relatively smaller short-run effect, 
but they last for a long time period. 
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F o r  example,  consider  the fol lowing t w o - c o m p o n e n t  model :  

e t = trte ,, e, .-- i.i.d. D(0, 1), 

0.: = w0.~ ,  + (1  - w)0.~,, 
0.2 t = Otle2- ' + (1 -- ~ l )0 . f t - l ,  

0.~, = 0 .2 (1  - ~ z  - f l ~ )  + ~ : L ,  + fl:~,-,. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

So o 2 is a weighted sum of  two componen t s ,  o 2, and  0.2,, with w and  1 - w as 
weights  respectively. 0.~z is an I G A R C H ( I , I ) - t y p e  specification and  0.g, is 
a G A R C H ( I ,  l)- type specification. It should  be noted  that  0 z is not  an Inte- 
gra ted  G A R C H  process  as will be shown below. Expand ing  the two var iance 
c o m p o n e n t s  ~r 2, and  0.2t, one  has 

0. 2, = :q ~ (1 - :q )k - ' e , / -k ,  (4.5) 
k = l  

1 - ~ 2  - f12 ~ ~ 2 
0 .2 t  0 -2  

1 - -  f12 + ~tz k=,~" ilk- e t - k "  (4.6) 

So 

I - ~2 - f12 0.2 = 0--2(1 - w) 
l - f l z  

+ Z [w~q(l - ~l)  k - I  + (I - w)~t2flk-i]~::_k. (4.7) 
k = l  

it is then clear that,  when  w~t,(l - ~q)k-t  > (1 - w):t2fl  k - ~ ,  the first var iance 
c o m p o n e n t  will have  a bigger effect than the second one, and  reversing the 
inequal i ty  reverses this result, if one  subst i tutes  0.2t, 0.~: into 0.2, it is readily seen 
that  et follows a G A R C H ( 2 , 2 )  process  and  the condi t iona l  var iance  equa t ion  
becomes  

0 . 2  ----- 0 " 2 ( 1  - -  w)~,( l  - oc 2 - f 1 2 )  --F [ W ~ l  --F ( l  - w)~2] l? . :_  1 

- -  [ W 0 t l f l  2 + (1 - w)(l - O t l ) O ~ 2 " l ~ / _  2 

+ (1 - aq + fl2)¢~ 2_ t -- (1 - cq)f120.2_2. (4.8) 

Interest ingly,  a l though  the A R C H ( 2 )  and  G A R C H ( 2 )  parameters  are negative 
in the above  equa t ion ,  the condi t iona l  var iance  process  is still guaran teed  to be 
posit ive provided  the pa ramete r s  in the c o m p o n e n t s  representa t ion are  positive. 
The  sum of  the A R C H  and  G A R C H  parameters  in the above  equa t ion  is 

L" = wal + ( 1  - w)~2 -- woqf l2  - ( 1  - w)(l - :q)o¢ 2 

+ 1 - at  + f12 - ( 1  - ~l)fl2 

= I - (I - w)~,(l - ~ 2  - f 1 2 ) ,  
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which is bigger than zero and less than one when 0 < w < 1, 0 < ~tt < 1, and 
0 < ct2 + f12 < 1. Under this assumption, the process is covariance-stationary 
with 

Ea 2 = Ear, = Eojt = E~,~ = a 2. (4.9) 

The theoretical autocorretation function for this two-component model is not 
available. However, by Eq. (3.4), an exponentially decreasing type autocorrela- 
tion function should be expected for this model. 

If one fits this two-component model for S&P 500 daily returns with a condi- 
tional normal distribution, then the estimated result is as follows: 

r, = 0.000463 + 0.148e,_ ~ + e,, e, = tr, e,, e, ~ N(0, 1), (4.10) 
(7.4) (18.2) 

tr 2 = 0.704try, + 0.296tr2,, (4.11) 
(39.3) 

tr 2, = 0.153~2 1 + 0.847tr2,_ t, (4.12) 
(29.0) 

tr 2, = 0.162 x 10 -6 -F 0.008~;:- 1 + 0.991a~,- ~, (4.13) 
(7.6) (12.3) (16.84) 

Log-likelihood: 56,894. 

This model gives a significantly higher likelihood function than a 
GARCH(I,  1) model (see Ding, Granger, and Engle, 1993). For the estimation 
result here, the volatility-persistent part comes from the GARCH(I,I)- type 
component instead of the IGARCH(I,  l)-type component, in the conditional 
variance equation, a~, starts very big (0.704 x 0.153 = 0.1077) in magnitude, 
but decays very fast with a decay rate of 0.847, while trot starts very small 
(0.296 x 0.008 = 0.0024) in magnitude, but decays very slowly with a decay rate 
of 0.991. So a~, captures the short-term fluctuation, while a~, models the 
long-term, gradual movements in volatility. For the specific parameters esti- 
mated here, wal(l - ~ l )  k-~ > ( i  -w)~zfl~ -~  when k ~< 25. So the short-run 
volatility fluctuation will die out within 25 days or about one month, and the 
long-run mean-reversion volatility component will dominate thereafter. 

Fig. 10 plots the simulated sample autocorrelations for the GARCH(I,  1) 
model estimated in Ding, Granger, and Engle (1993). Fig. 11 plots the simulated 
sample autocorrelations for the two-component model estimated above. 
Clearly, the two-component model gives a much closer sample autocorrelations 
than GARCH(1, 1), compared to the real one. The two-component model is also 
more persistent in the sense that it has more lags of positive s~,mple autocorrela- 
tions. 

The intuition behind this two-component model is that one can use two 
different variance components, each of them has an exponentially decreasing 
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autocorrelation pattern, to model the long-term and short-term movements in 
volatility. This can also be seen from the two different slopes in sample auto- 
correlations. However, it is also seen that the two-component model is still not 
enough to account for the whole autocorrelation pattern, as it might be reason- 
able to think that there are many more components in volatility. To generalize 
this idea, an N-component model is defined as follows: 

et = ~te,, e, ,-, i.i.d. D(0, l), (4.15) 

N N 

= E w:L E w,= i, (4.16) 
i = 1  i = 1  

a 2 =a2(1  --~q--fl~)+¢qe:-t +flia2-t,  i=  1,2 . . . . .  N, (4.17) 

where w~ is the weight for volatility component i. Since this model is a very 
general one and encompasses the models discussed above as special cases, one 
would expect it to give a better approximation to the real data. The sample 
autocorrelation, which consists of N different sloped exponentially decreasing 
components, will essentially envelope the real one. Similar to the two-compo- 
nent model, the N-component model corresponds to a GARCH(N,N)  model. 
However, when the number of components N is too large, it will be difficult to 
estimate ~ and fl~ for such a model. On the other hand, one does not have any 
prior knowledge how many variance components there really are. Our interest is 
at the limiting case when N goes to infinity, and ~i and fl~ can take any value in 
some region, so the component model will correspond to no GARCH process 
having finite number of parameters. 

Under this situation it is necessary to assume some distributional forms for 
and fl in order to go further. One very general distribution defined on the 

range [0, l l ,  which can be transformed to any other range [a,b], is the Beta 
distribution. The density function for a Beta distribution with parameters p,q is 
as follows: 

x p- tO - x F -  l 
f (x)  = , 0 ~< x < 1, (4.18) 

e(p, q) 

where B(p, q) is the Beta function defined as follows: 

1 

B(p,q) = ~ X P - I ( I  -- X) q - I  dx. (4.19) 
0 

Beta distribution can have various shapes depending on the parameters p and q. 
It includes many other distributions, such as uniform, as special cases. Johnson 
and Kotz (I 970) give a detailed discussion for this family of distributions. In the 
following analysis it will be assumed that fl has a form of Beta distribution on 
the range [0, I] with parameters p and q. It will be argued later that the exact 
form selected for this distribution function is not of critical importance except 
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near fl = 1. It will also be assumed that ~t = (1 - fl)~*, where ct* is from any 
distribution defined on the range [0, 1] with a mean p > O. It then follows that 
0 ~< ~ + fl ~ 1 as required. For mathematical convenience it will be further 
assumed that ~* is independent of fl even though it can be seen later that this is 
not necessary. Since Eq. (4.17) can be rewritten in the following form: 

t72 __ ~2 1 - o~ i - fll o~i + - -  e,z_l, i = 1,2 . . . . .  N, 
1 - -  f l i  1 - -  f l i L  

substituting this into (4.16) one gets 

,=l ,_ 1 - fl, + ~ e t - l j ,  (4.20) 

where L is the lag operator. When N -o o0 and under the distributional assump- 
tions for ~ and fl given above, one has 

tr• = 0"2 i 1 - -  0t - -  i ~t o i - ?  f ldF(~ ' / / )+  l - - -S~  ~'LtdF(~'p) 

1 I 
= (1 - : ) d r ( : )  + f : ( I  - d r ( : , / J )  

O k = l  O 

2 =a2(1 - / 0 +  ,:,-k I ~*dF(~*) I(1 - / / ) i l k - '  dF(fl) 
k = !  O O 

= a2( l -- lO +la  ~ B ( p  + k - l ,q + l) e2_k. {4.21) 
k= I B(p ,q )  

The conditional variance process decided by the above formula has the long 
memory property since, when k large, 

B l p  + k - l , q  + l) q r l p  + q ) r ( p  + k - l) 
a k ~ B(p,q) r (p ) r (p  + q + k) 

q r ( p  + q) k -  i -q (4.22) 
r(q) 

which is a characteristic of a long memory process (see Granger, 1980). We will 
refer to this general class of models as Long Memory ARCH model of order 
q and denote as LMtq)-ARCH model. It should be noted that independent 
research by Baillie, Bollerslev, and Mikkelsen (1996) leads to a closely related 
model, which they call Fractionally Integrated GARCH, or FIGARCH model. 
The result here appears to provide an interesting argument for how such 
volatility processes might arise. 

It is seen from Eq. (4.22) that except for at the extreme point of p = 0, the 
decay pattern ofak is solely decided by q and so the discussion in Granger (1980) 
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applies here. According to Granger  (1980), the shape of  the Beta  distribution is 
of little relevance in getting the long memory  property of  the model except near 
fl = 1, where q determines the slope of  the Beta density function in the form 
chosen. If the upper limit of  the range is changed from one to b, where b is some 
quanti ty strictly less than one, then ak will be dominated by exponentially 
decreasing component  again and the model will lose the long memory  property. 
So, as far as a propor t ion of fl is taken from regions arbitrarily close to one, the 
model will have the long memory property desired. It is thus seen that the most  
important  parameter  for getting volatility persistence is /~ instead of  ~ + ft. 
Impor tan t  difference also occurs when p takes the value of  zero. When p = 0, the 
distribution for fl collapses to the lower limit which is zero, so each component  
follows an A R C H  (1) process instead of  a G A R C H ( I ,  1) process. The aggregated 
conditional variance process (4.21) becomes 

at z ---- az(  1 -- P) + P ez- I ,  

which, as discussed in Section 3, does not have long memory property even if 
/ ~ = 1 .  

The coefficient for e.z_k from the Long Memory  A R C H  model decays hyper- 
bolically which is much slower than that of  any G A R C H  models having finite 
lags of ARCH and G A R C H  terms. Table 3 gives some numerical values for 
coefficients at different lags of  these two classes of  models. The first five columns 
are coefficients at lag k for long memory models with different parameters p and 

Table 3 
Coefficients at lag k (ak) for long memory and GARCH(I, I) models 

Lagk p = l  p = 2  p = 3  p = 4  p = 5  p =0.75 a=0.1 
q = 0.1 q = 0.2 q = 0.3 q = 0.4 q = 0.5 q = 0.25 b = 0.9 

I 0 .09091 0.09091 0.09091 0.09091 0.09091 0 .25000  0.10000 
2 0 .04329 0.05682 0.06342 0.06734 0.06993 0 .09375 0.09000 
3 0 .02793 0.04058 0.04787 0.05261 0.05594 0 .05469  0.08100 
4 0 .02044 0.03122 0.03799 0.04266 0.04607 0 .03760  0.07290 
5 0 .01603 0.02518 0.03122 003555 0.03880 0.02820 0.06561 

IO 0 .00752 0.01227 0.01567 0.01824 0.02028 O.O1166 0.03874 
15 0 .00484 0.00855 0.01191 0.01525 0.01877 0.00691 0.02288 
20 0 .00353 0.00605 0.00819 0.01019 0.01219 0.00482 0.01351 
50 0 .00129 0.00202 0.00249 0.00283 0.00308 0 .00153 0.00057 

100 0 .00060 0.00088 0.00101 0.00107 0.00109 0.{10065 0.00000 
150 0 .00038 0.00054 0.00060 0.00061 0.00059 0 .00039  0.00000 
200 0.00028 0.00038 0.00041 0.00041 0.00039 0 .00027 0.00000 
500 0 .00010 0.00013 0.00012 0.00011 0.00010 0 .00009  0.00000 

1,000 0 .00005 0.00006 0.00005 0.00004 0.00003 0 .00004  0.00000 
1,500 0.00003 0.00003 0.00003 0.00002 0.00002 0 .00002  0.00000 
2,000 0 .00002 0.00002 0.00002 0.00002 0.00001 0 .00002  0.00000 
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q. They all start at the same coefficient at lag 1, but after that they differ from 
each other. Column 6 is also a long memory model with p = 0.75 and q = 0.25, 
so that p + q = 1. The model is of form (4.27) which will be discussed below. The 
coefficient at lag 1 is very big compared to the first five columns. However, 
starting from lag 2, the coefficient decreases much faster than that of the first five 
models. The last column is the coefficients at different lags for an IGARCH ('~, 1) 
model with ARCH parameter 0.1 and GARCH parameter 0.9. Comparing this 
model with the long memory models, it can be seen that the coefficients for this 
model decrease to zero much faster. The coefficients after lag 100 are all zero to 
the fifth decimal point, while all the long memory models still have a coefficient 
around 0.00002 at lag 2,000. 

Since ~k=l  ak = 1, which is the same as an IGARCH process, the Long 
Memory ARCH model provides a mechanism to distribute more weight on the 
far past shocks which enables the model to have the long memory property 
desired. Several special cases arise from (4.21). When/t  = 1, the distribution for 
:¢ will put all its probability mass on its upper limit, i.e., ~i = I - fli, so each 
component follows an IGARCH(I,  1) type process and one has 

qr(p + q)r(p + k - I) 
O-2 k: ,  F- (p- )F-~  q +k ' )  t:-k, (4.23) 

which also has the property that the coefficients for e,~-k sum to 1. When 
p + q  = 1, one has 

= a 2 ( 1 - / t ) + p  ~ q F ( k - q )  l)e2_k 0- 2 

= a2(l - /~)  +/~(I - (I - L)q)82, (4.24) 

which is the same as 

( l -  L)',tz = ( ~  - l ) (0- ' - -a~)+0-~(e~-1) .  (4.25) 

When 0 < q <½, ~ is stationary, the mean exists and is equal to a 2, 
En~ = Ea~ = a 2. So the right=hand side is a white noise and ~ is an l(q) process. 
If further conditions are imposed so that the fourth moment of ~, exists, then the 
theoretical autocorrelation function for el from this model is 

- r ( 1  - q )  P~ = corr(~, 2,~-k) = r(1 q) r(k  + q) ~ _ _  kaq-t, (4.26) 
r(q) r(k + 1 - q) r(q) 

which is the same as an I(q) process in mean. Finally, when ~u = 1 in (4.25), one 
gets 

( 1  - L)%~ = tr~(e~ - 1), (4.27) 
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which is the long memory model proposed by Granger and Dine (1995) and is 
also a special case of the FIGARCH model of Baillie, Bollerslev, and Mikkelsen 
(1996). 

The above discussion in ~2 is solely for convenience. It is not difficult to 
generalize to other cases. For example, if each volatility component follows 
Ding, Granger, and Engle's Power-ARCH: 

et = ~tet, et ",, i.i.d. D(0, 1), (4.28) 

N N 

o'~ = E w , ~ ,  E w, = 1, (4.29) 
i = 1  i = 1  

og = ~(I - ~i - P,) + ~,le,- i I~/,I +/~iog- i, i = I, 2 ..... N, (4.30) 

where 2 = Ele, l a and 6 is a positive number to be estimated from the data set. 
Then, under the same assumption as before, one has 

~,~ = ~ ( 1  - ~) + ~ ~. 
B(p + k l ,q  + I) 

k=l B(p,q) I~'-kl~/)'" (4.31) 
l 

The discussions for # :  or e 2 above are all applicable to o: or [etl ~ here. le, I ~ will 
have the long memory property discussed above. When p + q ffi 1, [tt[ ~ will have 
a theoretical autocorrelation function as in (4.26). If 6 = 1 is the true data- 
generating process, then the absolute returns will also have the properties. 

In order to examine the practical relevance of this new class of models, various 
long memory models with alternative distributions are estimated for S&P 500 
daily returns using the estimation by simulation method discussed in Ding 
(1994). [Interested readers are referred to Ding(1994) for a detailed discussion of 
simulation and estimation for this general class of Long Memory ARCH 
models.] The finally preferred model and its estimation result is as follows: 

h=0 .000608+0 .103e t - i  +e.t, et=ate~, 
(13.3) (16) (4.32) 

B(p + k - l ,q + l) 
¢rt I~,-,<l/,k (4.33) 

k/'= l B(p, q) 

where et has a double exponential distribution and A = E[et[ = v /~ .  The esti- 
mated p equals 5.41, with a t-statistic 4.93, and the estimated q equals 0.597, with 
a t-statistic 8.72. The likelihood function is 57,226, which is much h i ~ e r  than 
that of the GARCH(I,  1) model and the two-component model. It should also 
be noted that the parameters used in this long memory model is less than the 
GARCH(I,  1) model and the two-component model. Fig. 12 plots the sample 
autocorrelations for S&P 500 daily returns and simulated absolute returns using 
the  parameters estimated above. A total of 200,000 variance components are 
generated using fl~ from the Beta (5.41, 0.597) distribution and ~q = l - fli. It can 
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be seen that for the first 500 lags the two sample autocorrelations move very 
closely. From lag 500 to lag 2,500, the simulated data has relatively higher 
sample autocorrelations than the real data. However, compared with any other 
models, this model still gives the best approximation to the reality. 

5. Conclusion 

This paper gives new evidence of long-term dependence that exists in specu- 
lative returns series. Five speculative returns series from different places and 
different markets are examined. It is found that the absolute returns and their 
power transformations all have long, positive autocorrelations. Usually this 
property is strongest for the absolute returns. One exception is the exchange rate 
return which has the strongest property when taking to power -~ (this property 
will be examined in more detail in a later paper). The theoretical autocorrelation 
functions for various GARCH(1, 1) models are derived and found to be expo- 
nentially decreasing, which is rather different from the sample autocorrelation 
function for the real data. A general class of long memory models that has no 
memory in returns themselves, but long memory in absolute returns and their 
power transtbrmations is proposed. The issue of estimation and simulation for 
this class of models is discussed. The estimated results show that this model gives 
a much better description for the real data. The Monte Carlo simulation also 
shows that the theoretical model can mimic the stylized empirical facts strikingly 
well. 

Appendix 

We first derive the autocorrelation functions for covariance-stationary 
GARCH(1, 1) model under conditional normal distribution. 

When • + fl < l, the GARCH(I, 1) process can be represented in its asymp- 
totic form as follows: 

0.2 = a2(l _ c~ - fl) + tee2_ t + fl0.2_ t, (A.1) 

where ~2 is the unconditional variance of e,. Rearranging the above equation 
one gets 

~2 _0.2 =(~ _k fl)(~2_l _ 0.2) _ fl~r2_,(e2_, _ 1) + 0.Z(e2 _ 1). (A.2) 

Multiplying both sides of the above equation by (e 2_ t - 0.2) and taking expecta- 
tion one has 

~t = (~e + fl)~'o - 2flEa 4-1, (A.3) 
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where  71 = E(e, 2 --  o2)(e, 2- l - (72) is the covar iance  between e 2 and  e, 2_ l an d  
7o = E(e 2-1 - o2)  2 is the var iance of  e, 2_ 1. 

If it is fur ther  a s sumed  3ce 2 + 2~fl + f12 < 1, so tha t  the four th  m o m e n t  of  
e, exists, then dividing bo th  sides of  (A.3) by ?o, which is finite, gives 

Pl = 0e + fl - 2 f lEo~- l /7o .  (A.4) 

Also by definit ion 

70 = E(e, 2 - o2)  2 = 3Eo~ - 0 4, (A.5) 

so one  has 

E o :  = (7o + a#) /3 .  (A.6) 

Subs t i tu t ing  (A.6) in to  (A.4) gives 

p~ = • + fl - 2fl 70 + ~'~ 37-----~ = ~ + ½fl - ~1°4/7°"  (A.7) 

F r o m  the condi t iona l  var iance  equa t ion  one  can get 

E o t - ,  = #4(1 - ~ - / D ( l  4- • + fl) 
1 - (3~ 2 4- 2gfl + f12) (A.8) 

Subst i tu t ing  this into (A.5), one  has 

~o = 3E~7~ - o ¢ = o ¢ 2(1 - 20tfl - f12) 
1 - (30t 2 + 2atfl 4- f12), (A.9) 

0 -4 1 - (3at 2 4- 2~tfl 4- f12) 
7o 2(1 - 2~fl - f12) (A.10) 

Subst i tu t ing this in to  (A.7) and  some simple a lgebra  shows 

ct2fl 
Pl = ~x 4- 1 - 20tfl - f12- (A.I 1) 

C o m b i n i n g  this with (3.4), one  has the au tocor re la t ion  funct ion for 
G A R C H ( 1 , 1 )  process,  when  the four th  m o m e n t  exists, as follows: 

P~ = ~ + I - 2 - ' ~ - -  f12)  (~ + " (A.12) 

M u c h  of  the above  discussions are  valid even if the four th  m o m e n t  does  no t  
exist. Assume now ~t + fl < 1, but  3~t 2 + 2~tfl + f12 >/1,  so tt is covar iance-  
s ta t ionary ,  bu t  its four th  m o m e n t  does  no t  exist. U n d e r  this assumpt ion ,  
Eq. (A.3) still holds  but  71,7o, and  Ea~_ 1 will go  to  infinity. However ,  the sample  

so that  



Z. Ding, C.W.J. Granger / Journal of Econometrics 73 (I 996) I85-215 211 

autocorre la t ion functions are always defined. By Jensen's inequality, one has 
~0.,- 1 > YI., and ~'0.,- l > E0", 4- l, where 3'o., = E(e 2 - ~r2) 2 is the variance of e2 
and 3'1., = E(e 2 - ~2)(a2_ t - 0"2) is the first-order autocovar iance  function of 
e, 2. There  is a time subscript for the variance and autocovar iance  function 
because they are usually changing with time when the fourth moment  of ~, does 
not  exist. If we define the t ime-varying first-order autocorre la t ion as usual, 

then 

PI., = ) 'l.t/~o.,- l, (A.13) 

Pl.,  = ct + fl - 2//Ec7~- 1/3'o.,- i. (A.14) 

F rom the condit ional  variance equat ion one has 

E a :  = #4(1 - a - / / ) ( 1  + a + / / )  + (3a 2 -I-//2 -I- 2~//)E~':_ 1 

= a4 (1  - ~ - - / / ) ( 1  + ~z + fl)[-I + {3~ 2 +//2 "1" 2~//) 
+ ... + (392 + f12 + 2a//) tEa~].  (A.15) 

Assume, without  loss of  generality, that  Eao 4 = 1, then 

I 

Eo'~ = a4(1 - ~ - - / / ) (1  + g + / / )  ~ (3~ 2 + / / 2  + 2~//)i. (A.16) 
i = O  

So substi tuting (A.5) and (A.16) into (A.14)gives 

t - I  

o'4(1 -- ~ -- / / ) (1 + • + / / )  ~ (3~ 2 + / / 2  "4- 2~fl) I 
i=o p, . ,  = • + / / -  2// ,_ 

30"4(1 - ct - fl)(l  + ~t + / / )  ~ (3~t 2 + / / 2  + 2~t//)~ _ a,t 
i = O  

= 0t + ½ / / -  1fl 3(1 - 0t - / / ) ( 1  + 0t + fl) ~ (3~t 2 + + 2~tfl)' -- 1 , 
i=O 

(A.17) 

which is changing with time. If it is assumed that  the process starts at  a very long 
time ago, so that  the last term can be ignored, then 

Pl ~ ~t + ~//, (A.18) 

and the autocorrela t ion function at lag k is approximate ly  

Pk ~ (u + J//)(~ + / / ) k -  1. (a.19) 

It should be noted that this expression is identical to (A.12) when 3a 2 + 2at/ /+ 
/ / 2 =  l, i.e., the autocorrela t ion function changes cont inuously  as far as the 
G A R C H ( I ,  1) model  is covariance-stat ionary.  
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The  s i tua t ion is qui te  different when  the eovar iance-s ta t ionary  assumpt ion  is 
removed.  Assume 

e, = tr, e,, e, ~ i.i.d. N(0, 1), tff = ~c~-l + (1 - ~t)trz_l, (A.20) 

and  Oo = 1, a cons tant .  Then  

~2 = (ct~2_, + (1 - ~)o 2_ ~ )e 2, (A.21) 

a nd  in general  it is not  difficult to get 

E a  2 = 1, 

Eo  4 = (1 + 2ct2) 'Ea 4 = (1 + 2~t2) ', 

E~.,2e2_~ = (1 + 2 ~ ) E a g ~  = (1 + 2~)(1 + 2~2) ' -k ,  

Ee  2 Ee2_k = (Eo,2_k) 2 = l, 

Ve 2 = 3(1 + 2ctZ)kEa~-k -- (Etr2-D z = 3(1 + 2 ~ z )  ' - l ,  

Ve2-~ = 3Ea~-k - (Ea4-k) 2 = 3(1 + 2~2) t-k -- I. 

So by definit ion the t ime-vary ing  au tocor re l a t ion  funct ion becomes  

Ee,2e2_k - Ee~Ee~-k (l + 2c0(l + 20~2) ' - k  -- 1 

Pk., = ~ X ~ . ' 2 _ k  = X/3(I  + 2a2) ' -  1)X/3(1 + 2~2) ' a - -  1)" 

(A.22) 

W h e n  t >> k > 0 and  ~ # 0, one  has approx ima te ly  

Pk "~ ~ - ~  ( |  + 20~2) -k/2" (A.23) 

It is seen that,  like a G A R C H ( I ,  1) process,  the au tocor re la t ion  funct ion de- 
creases exponential ly .  In the extreme ease of  ~t -- 0, so tha t  a~ = a[_ 1 . . . . .  
a 2 = tr 2, i.e., the var iance  is cons tan t  over  t ime and  there is no  heteroskedast ic i ty  
in the series concerned ,  then (A.22) gives Pk -~ 0 as might  be expected. O n  the 
o the r  extreme,  if ~t = l, so tha t  a~ = e~_ 1, then (A.23) gives 

Pk.f = x / (  y - k +  i _ l ) / ( y +  t _ 1). (A.24) 

W h e n  t >> k > 0, (A.24) becomes  

Pk ~ 3-k/2, (A.25) 

and  aga in  it is exponent ia l ly  decreasing. 
Similar  results can  be derived for the I G A R C H ( I ,  1) process with a drift. 

Assume now 

tr z --- ,o + ~t~zl + (1 - ct}tr~_ i (A.26) 
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and cro ~ = ~o, a constant.  Then 

Ea2 = E(,o + u~/_ ~ + (1 - u)a~2_l) = ~o + Ea2_ ~ = (t + 1)w (A.27) 

and 

Ea~ = El-co 2 + 0~2~4 1 + (1 - cc)2aL t + 2coc~e2_ t 

+ 2o(1 - toe2-1 + 2~(1 - u)e2- ,a2-1]  

= co 2 + (I  + 2~2)Ea~_t + 2¢oEa2_ t 

= co2 + (l + 2x2)[¢~ 2 + (1 + 2~2)Ea~_2 + 2~Ee2_2] + 2¢0E02-1 

= ~o2 + ¢o2(1 + 2~2) + ~o2(1 + 20~2)2 + ... + co2(l + 2~2)tEao 4 

+ 2e~Ea2_ i + 2co(1 + 2u2)Ea2_2 + ... + 2~o(1 + 2 ~ 2 ) t - t E a  2 

t ! 

= co 2 ~ (l + 2~2) ~ + 2~  2 ~ i(1 + 2~2) ' - i .  (A.28) 
i = O  i = 1 

When ~ ~ 0, (A.28) becomes 

Ea~ = co2(1 + 2 9 2 )  '+1 - 1 ¢o2(1 + 20c2) t+l - ( 1  + 2 9 2 ) -  20c2t 
2~2 + 2~4 

When t is large, one has approximate ly  

E a ~  z 1 + (1 +20~2) *+1 (A.29) 

By the definition of an autocovar iance  function, one has 

= ko, E,r,L~ + (1 + 2~,)E,r;_~ - (~,t, + E,~L~)E,~2_~ 

-- (1 + 2g)E~r~_~ - (Eo'2_~) 2. (A.30) 

So 

(1 + 2~)Ea~_, - (Ea2_,) 2 

Pk = ~ / [3Eo~  - (Eo2) 2] 1"3E~L~ - (Ecr2k) 2] 

x 3 + 1)2]-1/2 

× I~..~2 ( 1 3  + 2u2)t_k+l ( 1 + l~.~) __ (t __ +k 1)2] -'/2. (A.31) 
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When t >> k > 0, one has approximately 

Pk ~ 1 +--~2~ ( 1 -t- 2a2) -k/2, 
3 

(A.32) 

which satisfies 0 <~ Pk ~< 1 when 0 ~< a ~< 1. Comparing (A.23) with (A.32), it is 
seen that the autocorrelation functions for IGARCH(I,  1) models with or 
without a drift are the same. 

When ~t = 0, the conditional variance process becomes a deterministically 
increasing step function independent of  st, which further gives us that er is an 
independent process with deterministically increasing variance. N o  autocorrela- 
tion should be expected for e 2 under this situation. The following algebra 
confirms this. Substitute a = 0 into (A.28), one gets 

Eo "4 = to2(l + 1) + to2(t + 1)t = to2(t + 1) 2, (A.33) 

substituting (A.33) into (A.30), one has 

Yk., = (1 + 20t)Etr~_k --  (Ea2_k)  2 = ¢02(t -F 1) 2 - t o 2 ( / +  1) 2 -- 0.  

So, as for the IGARCH(1, 1) process without a drift, the autocorrelatie.~ func- 
tion is zero when the lagged error term does not enter the conditional variance 
process. 
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