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Abstract 

We apply the modified rescaled range test to the return series of 1,952 common stocks. 
The results indicate that long memory is not a widespread characteristic of these stocks. But 
logit models of the event of a test rejection reveal that rejections are linked to firms with 
large risk-adjusted average returns. The maximal moment of a return distribution is also 
found to influence the event of a rejection, but not in a way suggestive of moment-condition 
failure. Evidence suggestive of survivorship bias is also uncovered. We conclude that there 
is some evidence consistent with persistent long memory in the returns of a small 
proportion of stocks. © 1997 Elsevier Science B.V. 
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1. Introduct ion 

A stationary long-memory process can be characterized by its autocorrelation 

function which decays at a hyperbolic rate. Such a decay rate is much slower than 
the geometric rate of weakly-dependent processes such as finite-order stationary 
ARMA processes. The fractionally-integrated ARMA models of Granger (1980), 
Granger and Joyeux (1980), Hosking (1981), and Mandelbrot and Van Ness 
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(1968) display long memory in the means of  their corresponding series. Recently, 
some models  have been introduced to describe long memory in variances. These 
are the fractionally-integrated GARCH models of Baillie et al. (1993) and 
Bollerslev and Mikkelsen (1993), and the long-memory stochastic volatility mod- 
els of Breidt et al. (1994) and Harvey (1993). These models allow for the presence 
of  long memory in the squared innovations of  a time series. 

It is the fractional-integration parameter, - 0 . 5  < d < 0.5, in long-memory 
models which determines the presence and describes the nature of the long 
memory. For d v~ 0, a process exhibits long memory.  The nature of  the long 
memory depends on the sign of  d. For d > 0, the sum of  the autocorrelations 
diverges to infinity, the dependence is positive, and the long memory is called 
persistent. Whereas for d < 0, the sum of the autocorrelations converges to zero, 
the dependence is negative, and the long memory is called antipersistent. 1 More 
precise details of certain fractionally-integrated processes are presented in Section 
2. 2 

The issue of whether or not the means of  financial-asset returns possess 
long-memory components is an empirical question with important implications for 
equilibrium asset-pricing models. These models are characterized by the absence 
of arbitrage opportunities. Mandelbrot  (1971) shows under certain conditions that 
perfect arbitrage, the process yielding the absence of arbitrage opportunities, is 
impossible when the process of  arbitrage is applied to a price series possessing 
increments which are driven by innovations with long memory.  For such cases, the 
process of  arbitrage does not generate perfect arbitrage; instead, a market generat- 
ing asset returns with long memory components in their means can be grossly 
inefficient. Hodges (1995), for example,  shows in certain cases that essentially 
riskless arbitrage can be accomplished in a market where prices possess long- 
memory components.  

Common methods of testing for the presence of  long memory in a series are the 
modified rescaled range (or, R / S )  test of  Lo (1991) and the test of Geweke and 
Porter-Hudak (1983). Hereafter we will refer to these tests as MRS and GPH. 3 
Results based on these tests of long memory in asset-return series are mixed but 

I An alternative characterization of a long-memory process focuses on its spectral density at the 
origin. The spectral density at the origin respectively diverges to infinity and converges to zero for 
persistent and antipersistent long-memory processes. 

2 See also Baillie (1995) and Brock and de Lima (1995, Sctn.3). These papers contain recent surveys 
of long-memory models and evidence of such behavior in economic and financial time series. 

3 Some other tests for long memory can be found in Davies and Harte (1987) and Robinson (1991). 
A Monte Carlo study fo the finite-sample size and power of the MRS, GPH, and other long-memory 
tests is contained in Cheung (1993). See also Agiakloglou and Newbold (1994). 
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largely negative. 4 Studies where some combination of these tests are applied to 
asset-return series include Ambrose et al. (1993), Cheung and Lai (1993), Cheung 
et al. (1993), Crato (1994), Goetzmann (1993), Lo (1991), and Mills (1993). Some 
of  the test statistics in these studies indicate evidence of  long memory in weekly 
UK gold returns (Cheung and Lai), weekly aggregate returns on Italian, Japanese, 
and West German stocks (Crato), daily UK aggregate returns (Mills), and annual 
UK aggregate returns (Goetzmann). Alternatively, no strong statistical evidence of 
long memory is found in certain daily, weekly, and monthly US aggregate stock 
returns (Abrose, Ancel, and Griffiths; Crato; Goetzmann; and Lo). Similarly, Crato 
finds no evidence of  long memory in weekly aggregate returns on Canadian, 
French, and UK stocks. And lastly, Cheung, Lai, and Lai find no evidence of  long 
memory in aggregate monthly returns on German, Italian, Japanese, and UK 
stocks. With the exception of  Crato (for a West German stock index) and 
Goetzmann, the authors of  these studies draw overall conclusions against the 
presence of  long memory in the series which they investigate. 

The conclusions drawn from the majority of  the studies mentioned above are in 
contrast with those drawn from many studies of long memory in asset returns 
based on R / S  analysis, a method first introduced by Hurst (1951) and further 
developed in the studies of  Mandelbrot and Wallis (1969) and Wallis and Matalas 
(1970) among others. This type of  analysis is regression based, where a sam_pie of 
the logarithms of  rescaled range statistics over varying-length subperiods of  a 
series is regressed on the logarithm of the subperiod lengths. A regression 
coefficient on the logarithm of the subperiod lengths differing from 0.5 can be 
suggestive of  long memory in the series. Values between 0 and 0.5 can be 
indicative of  antipersistent long memory, while values between 0.5 and 1 can 
indicate persistent long memory. 

Studies in which R / S  analysis is applied to financial time series include 
Greene and Fielitz (1977), Booth and Kaen (1979), Booth et al. (1982a,b), Helms 
et al. (1984), and more recently Peters (1989, 1991, 1992, 1994). The authors of  
these studies respectively conclude that long memory is present in return series 
relating to common stocks; gold; gold and foreign exchange; commodity futures; 
and, in the case of  Peters, a wide variety of  financial assets. 

The results from these studies have been criticized in the more recent literature. 

4 Although not of direct concern to this study, there is recent evidence suggesting the presence of 
long memory in asset-return volatilities. Crato and de Lima (1994) and Ding et al. (1993) report very 
slowly decaying rates of decay in the autocorrelation functions of the volatility in certain aggregate 
stock-return series. Brock and de Lima (1995) find that short-term memory is rejected by the MRS and 
GPH tests for a large fraction of volatility series associated with daily common-stock returns. Baillie et 
al. (1993) and Bollerslev and Mikkelsen (1993) respectively find evidence of long memory in squared 
innovations of US$/DM exchange rate and the S&P 500 stock index. This evidence is found by means 
of estimating fractionally-integrated GARCH models to these series. The long-memory stochastic 
volatility models of Harvey (1993) and Breidt et al. (1994) also yield such evidence in certain 
aggregate stock-return series. 
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This criticism focuses mainly on the difficulty of R / S  analysis in distinguishing 
between long-memory and short-term dependent processes (cf. Davies and Harte, 
1987; Wallis and Matalas, 1970) or, similarly, the lack of distribution theory by 
which to conduct formal hypothesis tests for long memory under relevant short-term 
dependence nulls (cf. Lo, 1991). Principally for this reason, R / S  analysis of long 
memory in economic time series has largely been abandoned recently in favor of 
Lo's  MRS test, a test which is less susceptible to this criticism. 

The chief purpose of this paper is to re-examine the claims by Greene and 
Fielitz (1977) of widespread evidence of long memory in daily common-stock 
returns. Our study is based on the MRS test. We apply the MRS test to the daily 
return series of 1,952 ordinary common stocks and evaluate the test based on 
asymptotic and bootstrapped critical values. Our sample consists of all ordinary 
common stocks listed in the 1991 Daily Stock Files of the Center for Research in 
Securities Prices (CRSP) with at least 750 contiguous stock-return observations. 
Following Lo, we compute MRS test statistics corresponding to fixed autocovari- 
ance lag-truncation lengths of 90, 180, 270, and 360 periods to control for 
short-term dependence in the return series. We also compute test statistics 
corresponding to other autocovariance lag-truncation lengths which are sample-size 
dependent. 

Our main results can be separated into two categories: results relating to the 
MRS test itself and results relating to the application of the test to the panel of 
stock-return series. Regarding this first category, we find that the test is sensitive 
to conditioning on the 'survival' of a series. Brown et al. (1993) show that by 
conditioning on the survival a firm, tests for long-range dependence (e.g., autocor- 
relation- and R/S-based tests) can be biased in favor of indicating the presence of 
such dependence in the firm's return series. Moreover, these authors further argue 
that bootstrapped versions of such tests should also be sensitive to conditioning on 
survival. We confirm their predictions by means of Monte Carlo simulations. 
Left-tailed asymptotic and bootstrapped MRS tests have a tendency to reject the 
short-term dependence null (when true) with a frequency greater than their given 
sizes when the tests are applied to series which are conditioned on their survival. 

We also find through Monte Carlo simulations that the MRS test is sensitive to 
violations of its condition that fourth moments exist in the series to which it is 
applied. When its fourth-moment condition is not met, the test leads to left-tailed 
rejections of its short-term dependence null (when otherwise true) with a fre- 
quency greater than its nominal size. Alternatively, we find that a bootstrapped 
version of the test is insensitive to this moment-condition failure. 

The chief conclusion from the second category of results is that long memory is 
not a widespread characteristic of common stocks. Such a conclusion is in contrast 
to the conclusion of Greene and Fielitz in particular and conflicts with the claims 
of Peters in general. We find that the proportions of left-tailed 5% significant 
rejections of the short-term dependence null by the MRS test, which can be 
indicative of antipersistent long memory, range from 2% to 6% across the tests 
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based on selected sample-size dependent autocovariance lag-truncation lengths. 
The corresponding right-tailed proportions, possible indications of persistent long 
memory, range from 4% to 10%. 

Stronger conclusions can be drawn from the rejection rates across the panel of 
return series, but they require caveats. Using the 2.5% and 5% MRS rejection rates 
and asymptotic p-values, we evaluate tests of the hypothesis that all of the series 
conform to Lo's  short-term dependence null. For the asymptotic tests, there are 
only two cases where this hypothesis is rejected at conventional significance 
levels. These cases correspond to certain left-tailed rejection rates. Consequently, 
these excessive rejection rates might be due to the effects of moment-condition 
failure and survivorship bias, rather than to the presence of antipersistent long 
memory in a statistically significant fraction of series. On the face of this evidence 
one might question whether any of the return series display evidence of long 
memory. 

On the other hand, the hypothesis that all the return series follow Lo's 
short-term dependence null is rejected by all tests based on selected right-tailed 
bootstrapped MRS tests. These excessive rates can neither be attributed to the 
effects of survivorship bias nor to moment-condition failures, Moreover, we find 
by means of estimating logit models of the event of a rejection by the asymptotic 
and bootstrapped tests that the returns of firms with heavy-tailed return distribu- 
tions are more likely to yield right-tailed rejections by the asymptotic and 
bootstrapped tests, and are less likely to yield left-tailed rejections. This cannot be 
a manifestation of moment-condition failure; and so, we conclude that tail 
thickness may proxy for some other information to which the MRS test is 
sensitive. We also find that the right-tailed rejections are linked to firms with 
relatively large risk-adjusted average returns. From these results we conclude that 
there is evidence suggestive of persistent long memory in some of the series. 

Evidence consistent with the effects of survivorship bias is also uncovered by 
the logit models. The returns of firms which eventually fail or are merged are 
more likely to generate left-tailed rejections, as are those corresponding to 
shorter-lived firms. These effects are statistically significant, however, only for the 
firms in our sample which eventually merged. 

The remainder of this paper proceeds as follows. Section 2 describes the MRS 
test. A description of the data and testing methods along with the results of the 
application of the test are contained in Section 3. In Section 4 we discuss the 
findings of a logit study of the event of a rejection by the test. Lastly, we offer a 
summary in Section 5. 

2. The modified R / S  test 

We begin with a discussion of Lo's  modification of the Hurst-Mandelbrot 
rescaled range statistic. The discussion borrows heavily from Lo (1991, pp. 
1281 - 1296). 
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2.1. The test statistic 

Consider a time-series sample {xt},~ l with sample mean 2(n) and sample 
autocovariances ~j(n), j = 0 . . . . .  q, where q denotes the autocovariance lag-trun- 
cation length. The modified R / S  (or, MRS) test statistic is given by 

k k 

max E [ x , - 2 ( n ) ] -  min Y'~ 
l <_k <_nj~ I 1 <_k <nj= I 

Q ( n , q ) = [ n . 6 2 ( n , q ) ]  - ' /2 

J 
wj(q )=  l - - - , q < n .  

q + l  

where 
q 

~ 2 ( n ,  q) = ~/o(n) + Y'~wj(q).~/j(n), 
j = l  

(1) 

(2) 

The bracketed term in Eq. (1) is the range (i.e., the maximum minus the minimum 
over k) of the partial sums of the first k deviations of xj from its sample mean. 
This range statistic is scaled by dividing the range by the square root of 6-2(n, q) 
in Eq. (2), which is an estimator of the variance of the partial sums. The difference 
between the Hurst-Mandelbrot R / S  and the MRS statistics centers on the 
variance estimator. Unlike the Hurst-Mandelbrot variance estimator, the variance 
estimator in the MRS statistic includes autocovariance terms which in general are 
needed if the process which generates {x,} is short-range dependent. 5 

2.2. The asymptotic distribution under Lo's short-term dependence null 

Lo derives the asymptotic distribution of the MRS test statistic under a certain 
short-term dependence null. This null hypothesis concerns a stochastic process, 
X t - / x  + E,, where /, denotes an arbitrary but fixed parameter and E, denotes a 
zero-mean random variable. The process {X t} is assumed to be strong-mixing. 
Strong-mixing is one way of measuring the degree of temporal dependence in a 
stochastic process. It is defined in terms of a-mixing coefficients, %,  given by 

a k = sup sup [Prob( a A B) - P r o b ( a ) .  Prob(B) 1, (3) 
J { A e,~CJ_ ~,B E 5~j + k} 

where o~s is the Borel o--field generated by { X, . . . . .  X,}. The time-series process 
{X,} is said to be strong-mixing if l i m k _ ~ a  ~ = O. As can be seen from the 
definition of the a-mixing coefficients, strong-mixing implies a form of asymp- 
totic independence. In effect, strong-mixing requires that the maximal dependence 

5 The weights wj(q) in (2) are Bartlett weights. Alternative weighting schemes and optimal selection 
criteria for q for covariance-matrix estimation are discussed in Andrews (1991). 
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between two events becomes trivially small as their period of separation increases 
without bound. 

In order to derive the asymptotic distribution of the MRS test statistic for 
strong-mixing processes where some form of the law of large numbers and the 
functional central limit theorem can be applied, some other conditions must be 
placed on {X,}. These conditions place restrictions on the maximal moments, the 
degree of distributional heterogeneity, and the maximal degree of dependence in 
{X,}. Moreover, some other conditions are needed to ensure consistency of 
~2(n,  q) in Eq. (2). In order for the law of large numbers and the functional 
central limit to be obtained, Lo imposes the following three conditions: 

supE(let]/3) < oo, for some/3 > 2, (4) 
t 

0 < o  -2=  l imE  l /n)  < ~ ,  (5) 
n ~  j 

and {e t} is strong-mixing with c~-mixing coefficients that satisfy 

~c 

}-" a 2 - ( 2 / 8 ) <  ~. (6) 
k = l  

The restriction in Eq. (4) requires that the second moments of the et's are finite; 
Eq. (5) restricts the degree of their distributional heterogeneity; and Eq. (6) 
combined with Eq. (4) governs the rate of decay of the mixing coefficients. In 
addition, if it is also assumed that as n increases without bound, q also increases 
without bound such that q ~a(nl/4), and if the maximal moment condition in Eq. 
(4) is further restricted to fourth moments, namely 

supE(I,,I ~) < ~ ,  for some /3 > 4, (4')  
t 

then consistency of 6-2(n, q) is ensured. This result follows from Theorem 4.2 of 
Phillips (1987). It should also be pointed out for future reference that Andrews 
(1991) improves the rate restriction of q ~a(rt 1/4) to a(nl/2). 

Under the assumption that {X,} is short-term dependent satisfying the condi- 
tions above, Lo shows that the asymptotic cumulative distribution function Fv(v) 
of V -  Q(n, q) is given by 

zc 

Fv(v ) = 1 + 2 Y'~ (1 - 4kZvZ)e - 2(k'~)2. (7) 
k = l  

Critical values of Fv(v) are 0.809, 0.861, 1.747 and 1.862 at the 2.5%, 5.0%, 
95.0% and 97.5% probability levels. 
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2.3. Long-range dependent alternatives 

Lo designs his short-term dependence null in order to distinguish between 
weakly-dependent (i.e., mixing) time-series processes and strongly-dependent 
processes such as fractionally-integrated ARMA processes. As mentioned in the 
introduction, these strongly-dependent processes are not strong-mixing and have 
autocorrelation functions which decay at rates much slower than those of weakly- 
dependent processes. Lo shows that the MRS test is a consistent test against a 
class of long-range dependent stationary alternatives. This class includes all 
fractionally-differenced Gaussian ARMA models with fractional difference param- 
eters, d, of d ~ ( - 0 . 5 ,  0.5). 

Fractionally-differenced Gaussian ARMA (ARFIMA) specifications with d 
( - 0 . 5 ,  0.5) can be expressed as 

q b ( B ) V a ( X t -  tx) = O(B)Z  t, d E  ( - 0 . 5 , 0 . 5 ) ,  {Zt} '~ i . i .d .N(O,  0"2), 
BX, ==- X~_ 1, 

~c 

n [ ( k - l - d ) / k ] ,  (8) 
j=0 O < k < _ j  

where (h(B) and 0(B) respectively denote autoregressive and moving-average lag 
polynomials. Theorem 3.3 of Lo (1991) shows that the MRS test statistic 
converges in probability to zero for these antipersistent long-memory processes 
(i.e., for d < 0); while for these persistent long-memory processes (where d > 0), 
the test diverges in probability to infinity. As a result, the tails of the MRS test are 
able to distinguish between these differing types of long-range behavior. 

2.4. Other alternatives 

While Lo's short-term dependence null is specifically designed to distinguish 
weakly-dependent processes from strongly-dependent processes, there are strong- 
mixing processes, however, which violate the assumptions of Lo's short-term 
dependence null. For example, a strong-mixing process with a maximal moment 
less than 4 violates the moment condition in Eq. (4'); the first difference of a 
stationary process will violate the heterogeneity condition in Eq. (5), since its 
spectral density at frequency zero vanishes; a strong-mixing process with a 
non-constant /z violates the short-term dependence null; and Lo (1991, p. 1283) 
provides other strong-mixing processes which violate Eq. (5). On the other hand, 
Lo's short-term dependence null covers a wide variety of conventional time-series 
processes, including Gaussian finite-order stationary ARMA processes, certain 
heterogeneously-distributed processes, as well as many of the stochastic models of 
persistence such as those of Fama and French (1988) and Poterba and Summers 
(1988). 
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2.5. Some finite-sample properties 

Table 1 displays results of  a few Monte Carlo experiments relating to the size 
and power of asymptotic and bootstrapped MRS tests. The experiments corre- 
sponding to the results in Panels A - D  are similar to Lo ' s  (1991, Tbls. 5 and 6) 
size and power experiments. Panels A and B correspond to Gaussian A R F I M A  
processes with AR and M A  lag-truncation lengths of  zero and with fractional-dif- 
ference parameters of d = 1 / 3  and d = - 1 / 3  respectively. Panel C corresponds 
to an i.i.d. N(0, 1) process; and Panel D corresponds to an AR(1) process with an 
autocorrelation coefficient of p = 0.5 and with i.i.d, normal innovations. 6 Table 1 
also includes the results of two size experiments in Panels C'  and D' correspond- 
ing to experiments where the i.i.d, normal innovations of experiments C and D are 
replaced with symmetric-about-zero i.i.d. Pareto innovations with a maximal  
moment  of  /3 = 2.7.7 These experiments are designed to evaluate the sensitivity 
of  the MRS test to departures from its fourth-moment condition (or, hereafter 
FMC) in Eq. (4'). The variances of  the innovations in the processes corresponding 
to all of the above experiments are selected so that the processes possess a unit 
variance. Lastly, Panel E displays the results of  an experiment where an indepen- 
dently-distributed N(/x,  1) process undergoes a sequence of  m = 4 alternating 
shifts in its mean, /z. Such a process violates Lo ' s  short-term dependence null 
even though it is independently distributed. This experiment is similar in nature to 
one in Cheung (1993, Sctn. 3.3). 

The sample sizes considered in the experiments are n = 750 and 1500. Tests 
based on q-lengths q(n)  of ( int)(nl/4) ,  ( int)(nl/3),  ( int)(nl /2) ,  and lengths based 

on a data-dependent formula of  Andrews (1991), q*(n) ,  are evaluated in each 
experiment. The q-length, q * (n),  is given by 

q 
" t  1 - P  2 ] ] '  (9)  

where ~ denotes the first-order sample autocorrelation coefficient associated with 
{xt}" 8 The size and power results relating to the asymptotic tests are based on 
10,000 replications. The results relating to the bootstrapped tests are based on 

6 Realizations of the random variables used in Monte Carlo simulations throughout this study are 
generated with the Box-Muller method and a combination of three linear congruential pseudo-random 
number generators. See Press et al. (1988, pp. 204-217). 

7 The choice of a maximal moment of/3 = 2.7 stems from results presented in Section 4. This value 
of/3 is the average Loretan and Phillips (1994) right-tailed maximal-moment estimate across the return 
series. 

8 This formula comes from equations (6.2) and (6.4) in Andrews (1991). Andrews shows that this 
q-length formula has optimal properties for Bartlett weights when the underlying data is generated by 
an AR(1) process. Optimal q-length formulas for other weighting schemes and data-generating 
processes can also be found in Andrews (1991). Throughout the remainder of the text we will ignore 
the integer cast, (int), on the q-lengths. 



382 C. Hiemstra, ,I.D. Jones~Journa l  o f  Empirical  Finance 4 (1997) 373-401  

Table 1 

2.5% and 5% rejection rates of  asymptotic and bootstrapped MRS tests against  seven processes a 

Left  tail Right tail 

2.5% 5% 2.5% 5% 

q n A S M P  BTSP A S M P  B T S P  A S M P  BTSP A S M P  BTSP 

Panel A: (1 - L)dx t  = e,, e t ~ i.i.d. N(0, %z),  ~ 2  = / ,2(1  _ d ) / F ( 1 - 2 d ) ,  d =  1 / 3  

q * (n )  750 0.000 0.001 0.001 0.002 0.603 * 0.681 * 0.504 * 0.596 * 

1500 0.000 0.000 0.000 0.000 0.774* 0.812 * 0.699 * 0.754* 

n 1/4 750 0.000 0.000 0.000 0.000 0.782 * 0.830 * 0.714" 0.758* 

1500 0.000 0.000 0.000 0.000 0.907 * 0.939 * 0.870 * 0.905 * 

n j /3 750 0.000 0.000 0.000 0.001 0.678 * 0.735 * 0.589 * 0.663 * 

1500 0.000 0.000 0.000 0.000 0.817 * 0.857 * 0.754* 0.798 * 

n I/2 750 0.003 0.006 0.006 0.009 0.246* 0.384* 0 . 1 4 4 '  0.293 * 

1500 0.001 0.003 0.003 0.006 0.443 * 0.508 * 0.331 * 0 . 4 1 0 '  

Panel B: (1 - L)dX~ = et, et ~ i.i.d. N(0, o-~2), d = - 1 / 3  

q * (n)  750 0.811 * 0.789 * 0.904 * 0.873 * 0.000 0.000 0.000 0.000 

1500 0.956 * 0.956 * 0.983 * 0.984 * 0.000 0.000 0.000 0.000 

n 1/4 750 0.886" 0.854" 0 . 9 4 7 '  0.921" 0.000 0.000 0.000 0.000 

1500 0.985 * 0.980 * 0.995 * 0.992 * 0.000 0.000 0.000 0.000 

n 1/3 750 0.712 * 0.685 * 0.834* 0.816 * 0.000 0.000 0.000 0.000 

1500 0.897 * 0.894 * 0.953 * 0.954 * 0.000 0.000 0.000 0.000 

n 1/2 750 0.026 0.087 * 0.080 * 0.159 * 0.000 0.000 0.000 0.000 

1500 0.101 * 0.168 * 0.223 * 0.310 * 0.000 0.000 0.000 0.000 

Panel C: X t ~ i . i .d .  N ( 0 , 1 )  

q * (n)  750 0.010 0.032 0.027 0.052 0.019 0.042 0.005 0.022 

1500 0.037 * 0.030 0.069 * 0.051 0.045 0.064 0.023 0.034 

n z/4 750 0.042 * 0.032 0.079 * 0.052 0.039 0.042 0.020 0.024 

1500 0.034* 0.032 0.065 * 0.051 0.044 0.064 0.020 0.038 

n I/3 750 0.035 * 0.027 0.068 0.061 0.036 0.044 0.017 0.02 

1500 0.030 * 0.031 0.060 * 0.050 0.042 0.062 0.019 0.04 

n I/2 750 0.030 * 0.032 0.061 * 0.052 0.033 0.038 0.015 0.01 

1500 0.014 0.032 0.035 0.062 0.031 0.067 * 0.011 0.03 

Panel C ' :  X t ~ i.i.d, symmetr ic  Pareto, E ( X  t) = 0, E(Xt 2) = 1, /3 =supEtX~ ' l  = 2.7 

q * (n)  750 0.047 * 0.017 0.088 * 0.041 0.017 0.0½8 0.006 0.015 

1500 0.048 * 0.027 0.084 * 0.052 0.020 0.043 0.009 0.02 

n I/4 750 0.040 * 0.018 0.080 * 0.053 0.019 0.040 0.009 0.01 

1500 0.043 * 0.026 0.082 0.053 0.019 0.040 0.009 0.01 

n ~/3 750 0.035 * 0.019 0.074 * 0.047 0.013 0.039 0.004 0.01 

1500 0.040 * 0.023 0.078 * 0.055 0.019 0.041 0.007 0.01 

n I/2 750 0.016 0.020 0.042 0.046 0.007 0.046 0.001 0.01 

1500 0.022 0.033 0.053 0.056 0.013 0.030 0.004 0.01 
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Table 1 (continued) 

383 

q n 

Left tail Right tail 

2.5% 5% 2.5% 5% 

ASMP BTSP ASMP BTSP ASMP BTSP ASMP BTSP 

PanelD: X t = p X  t_t + e t ,  p = 0 . 5 ,  e t ~ i . i . d . N ( 0 , [ l - 0 2 ] )  
q * (n) 750 0.027 0.027 0.052 0.057 0.036 0.070 * 0.015 0.03 

1500 0.029 * 0.032 0.057 * 0.064 0.053 0.068 * 0.026 0.03 

n I/4 750 0.020 0.015 0.039 0.031 0.071" 0.126 0.038 0.07 * 

1500 0.021 0.017 0.042 0.038 0.084* 0.104 * 0.049 * 0.06 * 
n I/3 750 0.025 0.023 0.049 0.046 0.048 0.101" 0.024 0.04* 

1500 0.029 * 0.027 0.056 * 0.054 0.060 * 0.079 * 0.032 * 0.04 * 
n I/z 750 0.017 0.036 0.040 0.069 * 0.015 0.045 0.004 0.02 

500 0.020 0.042 * 0.045 0.074 * 0.033 0.049 0.011 0.02 

Panel D': X t = pX t_ t + Et, p = 0.5, et ~ i.i.d, symmetric Pareto, E(e t) = 0, 
E(et 2) = (1 - p2), fl = 2.7 

q * (n) 750 0.029 * 0.025 0.060 * 0.051 0.017 0.056 0.006 0.028 
1500 0.031" 0.022 0.064* 0.051 0.024 0.040 0.010 0.017 

n I/4 750 0.019 0.013 0.039 0.027 0.038 0.09l * 0.018 0.057 * 

1500 0.020 0.006 0.041 0,020 0.046 0.074 * 0.023 0.033 
n t/3 750 0.025 0.019 0.052 0,042 0.025 0.069 * 0.010 0.038 * 

1500 0.028 0.016 0.058 * 0.043 0.030 0.046 0.013 0.022 
n I/2 750 0.022 0.039* 0.052 0,066* 0.007 0.047 0.011 0.02l 

1500 0.027 0.040 * 0.059 * 0.074 * 0.013 0.030 0.004 0.013 

Panel E: X t = 0 . 1 - ( -  1) g + let, e t ~ i.i.d. N(0, 1), g = (int)[(m + 1)t/n],  m = 4 
q*(n )  750 0.004 0.002 0.010 0.004 0.164' 0.220* 0.098* 0.139" 

1500 0.000 0.000 0.000 0.000 0.385 0.424 * 0.271 * 0.324 * 
n I/4 750 0.003 0.002 0.009 0.003 0.138 * 0.200* 0.076* 0.123 * 

1500 0.000 0.000 0.000 0.000 0.348 * 0.397 * 0.233 * 0.286 * 
n I/3 750 0.001 0.001 0.007 0.055 0.117 * 0.181" 0.062 ~ 0.107 * 

1500 0.000 0.000 0.000 0.000 0.302 * 0.361 0.199 * 0.254* 
n I/2 750 0.001 0.005 0.005 0.014 0.042 0.108 * 0.014 0.052 * 

1500 0.000 0.000 0.000 0.002 0.139 * 0.205 * 0.069 * 0.126 * 

a Asterisks denote 1% significant rejections of the hypothesis that the rejection rate is less than or equal 

to its corresponding nominal size. 

1 ,000  r e p l i c a t i o n s  w h e r e  fo r  e a c h  r e p l i c a t i o n  the  t e s t  s t a t i s t i c s  c o r r e s p o n d i n g  to  t he  

r e a l i z e d  s e r i e s  o f  t h e  r e p l i c a t i o n  a re  e v a l u a t e d  o n  the  b a s i s  o f  c r i t i c a l  v a l u e s  

s t e m m i n g  f r o m  1 ,000  t i m e - s c r a m b l e d  s h u f f l i n g s  o f  t he  r e a l i z e d  s e r i e s .  F i n a l l y ,  w e  

t e s t  w h e t h e r  t he  r e j e c t i o n  r a t e s  R ( s )  b a s e d  o n  N r e p l i c a t i o n s  a r e  g r e a t e r  t h a n  the  

n o m i n a l  s i z e s  s. W e  e v a l u a t e  s u c h  t e s t s  b y  m e a n s  o f  the  s t a t i s t i c ,  N I / 2 [ R ( s ) -  

s ] / [ s ( 1  - s ) ]  1/2, w h i c h  i s  a s y m p t o t i c a l l y  d i s t r i b u t e d  N ( 0 ,  l )  as  N ~ ~ u n d e r  t he  

a s s u m p t i o n  t h a t  N .  R ( s )  is  d i s t r i b u t e d  b i n o m i a l  ( N ,  s) .  

T h e  r e s u l t s  r e p o r t e d  i n  P a n e l s  A a n d  B r e l a t i n g  to  t he  p e r s i s t e n t  a n d  a n t i p e r s i s -  

t e n t  G a u s s i a n  f r a c t i o n a l l y - d i f f e r e n c e d  p r o c e s s e s  i n d i c a t e  t h a t  t he  t e s t s  h a v e  r e l a -  
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tively high power in rejecting the short-term dependence null when they are based 
on q-lengths of q <<_ n 1/3. The asymptotic and bootstrapped tests yield similar 
power values and are comparable to the results of Lo (1991). 

In regard to the size of the tests, the results in Panel C indicate that the 
asymptotic test has a slight tendency to generate too many left-tailed rejections for 
the i.i.d, normal case. The results in Panel C', corresponding to the experiment 
where the tests are applied to i.i.d, symmetric Pareto realizations, indicate that the 
asymptotic tests based on q < n 1/3 are  sensitive to FMC failures. In these cases 
there is a shift to the left of the finite-sample distribution relative to the asymptotic 
distribution. The result is an over-abundance of left-tailed rejections which does 
not appear to decline with increasing n. Similar findings are reported in Brock and 
de Lima (1995, Sctn. 3.1). Panels D and D' indicate that the bootstrapped test can 
be sensitive to its failure to incorporate short-term dependence into its null 
distribution. This is especially apparent from Panel D for the right-tailed tests 
based on q < n 1/3. It should be noted, however, that this sensitivity generally 
declines with increasing n. And lastly, the results in Panel E relating to the effects 
of mean shifts on the MRS test indicate, as in Cheung (1993), that the MRS test is 
very sensitive to such effects. Over-rejections occur in the right-tailed tests, and 
the bootstrapped tests appear somewhat more sensitive to shifts in mean. 

We conduct one other set of experiments. As mentioned in the introduction, 
Brown et al. (1993) argue that tests for long-range dependence can be sensitive to 
conditioning on survival. Table 2 displays results of a set of experiments in which 
the MRS tests are applied to the realized return series of an i.i.d. N(0, o -2) returns 
process, say {r,}, provided that its corresponding price series, {p,}, given by 

t 

p , -  1 + E r~, (10) 
" r= l  

remains above some threshold, k, throughout the horizon, t = 1 . . . . .  n. Following 
these authors, we set o-2 = 0.04, and evaluate the finite-sample size of the MRS 
tests for the cases where k = (0.095, 0.182, 0.262, 0.336, and 0.405). All other 
aspects of these experiments are the same as those relating to Table 1. As shown 
in the table, the left-tailed asymptotic tests based on q <_ n ~/3 all yield rejection 
rates which are significantly larger than their sizes. These excessive rates decline 
with increasing n, but not considerably. Many of the bootstrapped tests also yield 
excessive left-tailed rejections, but the excessive rates are lower than those 
corresponding to the asymptotic tests. 

Overall, the results from these experiments suggest the possibility that right- 
tailed rejections by asymptotic MRS tests might simply be the result of size 
distortions arising from shifts in means (Table 1, Panel E) or from slow-conver- 
gence problems (Panel D). Right-tailed rejections by bootstrapped tests might be 
the result of shifts in means (Panel E) or from failure to account for short-term 
dependence in the bootstrap (Panels D and D'). Alternatively, left-tailed rejections 
by asymptotic tests might be the result of slow-convergence problems (Panel C), 
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Table 2 

2.5% and 5% rejection rates of asymptotic and bootstrapped MRS tests against the process {rt} defined 
below, a 

{r t} ~ i.i.d. N(0,0.04) where Pt =- 1 +SZ~_ i rt > k for all t. 

Left tail Right tail 

2.5% 5% 2.5% 5% 

k q n ASMP BTSP ASMP BTSP ASMP BTSP ASMP BTSP 

0.095 q ' ( n )  750 0.058" 0.038* 0.100'  0.073* 0.022 0.040 0.009 0.021 

1500 0.053" 0.042" 0.094* 0.074" 0.033 0.035 0.018 0.021 
n I / 4  750 0.048'  0.036 0.089" 0.066" 0.019 0.039 0.007 0.021 

1500 0.047 * 0.042 * 0.086 * 0.077 * 0.031 0.037 0.017 0.020 
n I/3 750 0.041 * 0.031 0.080 0.067 0.018 0.037 0.006 0.019 

1500 0.043" 0.040" 0.078 * 0.071" 0.030 0.035 0.015 0.020 
n I/2 750 0.013 0.033 0.037 0.053 0.009 0.048 0.02 0.025 

1500 0.021 0.035 0.047 0.068 * 0.022 0.042 0.009 0.023 

0.182 q * ( n )  750 0.056* 0.035 0.100" 0.071" 0.022 0.041 0.009 0.021 

1500 0.048" 0.038" 0.091" 0.069" 0.031 0.035 0.016 0.021 
n I / 4  750 0.048" 0.034 0.088'  0.064" 0.020 0.040 0.007 0.022 

1500 0.043" 0.037 * 0.083 " 0.073" 0.030 0.037 0.015 0.020 
n 1/3 750 0.041" 0.029 0.079" 0.064 0.018 0.038 0.006 0.020 

1500 0.039" 0.035 0.075" 0.066" 0.029 0.036 0.044 0.020 

n ~/2 750 0.014 0.027 0.036 0.049 0.010 0.052 0.002 0.027 
1500 0.019 0.033 0.044 0.065 0.021 0.043 0.008 0.024 

0.262 q* (n) 750 0.055" 0.037" 0.099" 0.070" 0.023 0.044 0.009 0.021 

1500 0.049" 0.041" 0.088 ' 0.070'  0.031 0.038 0.017 0.022 
n I / 4  750 0.045" 0.036 0.084" 0.063 0.021 0.042 0.007 0.022 

1500 0.043" 0.035" 0.080" 0.073' 0.030 0.039 0.015 0.021 
n 1/3 750 0.039* 0.031 0.076 0.066* 0.018 0.041 0.007 0.020 

1500 0.038 0.038'  0.074" 0.067'  0.029 0.038 0.014 0.022 
n ~/2 750 0.013 0.030 0.034 0.053 0.012 0.056 0.002 0.028 

1500 0.018 0.036 0.044 0.068 * 0.022 0.046 0.008 0.026 

0.336 q*(n)  750 0.052 0.036 0.095" 0.071" 0.023 0.044 0.009 0.021 

1500 0.048 * 0.042 * 0.086" 0.072" 0.032 0.041 0.046 0.027 
n 1/4 750 0.043" 0.035 0.081" 0.063 0.020 0.040 0.007 0.021 

1500 0.040" 0.039'  0.078" 0.074' 0.030 0.042 0.015 0.025 
n I/3 750 0.037'  0.029 0.072" 0.064 0.019 0.054 0.006 0.02l 

1500 0.037 * 0.040" 0.070" 0.069' 0.029 0.040 0.014 0.024 
n I/2 750 0.013 0.029 0.034 0.053 0.010 0.044 0.002 0.030 

1500 0.018 0.038" 0.041 0.073" 0.021 0.043 0.008 0.023 

0.405 q*(n)  750 0.053* 0.039* 0.092" 0.071" 0.025 0.048 0.009 0.023 

1500 0.048" 0.038" 0.087" 0.062 0.032 0.046 0.016 0.028 
n I/4 750 0.045" 0.038'  0.080'  0.061 0.021 0.048 0.007 0.023 

1500 0.043" 0.035 0.079' 0.063 0.030 0.044 0.015 0.028 
n 1/3 750 0.037" 0.029 0.073" 0.065 0.019 0.046 0.06 0.023 

1500 0.039" 0.036 0.072" 0.062 0.029 0.043 0.014 0.026 
n ~/2 750 0.013 0.029 0.034 0.055 0.010 0.052 0.002 0.031 

1500 0.018 0.035 0.043 0.067 * 0.022 0.046 0.008 0.027 

a Asterisks denote 1% significant rejections of the hypothesis that the rejection rate is less than or equal 
to its corresponding nominal size. 
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FMC failures (Panel C'), or from survivorship bias (Table 2). And finally, 
left-tailed rejections by bootstrapped tests might reflect survivorship bias, as 
indicated in Table 2. 

3. An application to common stock returns 

3.1. The returns series 

The daily common stock returns in our sample are taken from the 1991 CRSP 
Daily  Stock  Files. These files provide information on stocks listed on the New 
York and American Stock Exchanges over the period July 2, 1962 to December 
31, 1991. The longest possible trading history for a stock is 7,421 trading days. 
Only those ordinary common stocks for which there are 750 or more contiguous 
stock-return observations are included in the sample. There are N = 1952 such 
stocks which satisfy this criterion in the 1991 CRSP files. 

For future reference, let t = 1 (July 3, 1962) . . . . .  t = 7420 (December 31, 1991) 
denote the days over which the sample of  stock-return series are observed. Let 
n~ > 750 denote the length of the return series corresponding to the ith firm in the 
sample. Also, let T i = { ' / ' i ( 1 )  . . . . .  7"i(ni)} denote the set of  days over which returns 
are observed for the ith firm. The return series are denoted by {ri,t}, t ~ T~, where 
i = 1 . . . . .  N and 1 < %(1) < "ri(n i > 750) < 7420. For the sample of stocks, the 
average and standard deviation for the number of  contiguous return observations 
are respectively 3,173 and 2,344. 

The stock-return series correspond to the CRSP holding period returns. (See the 
1992 Stock File  Guide (CRSP, 1992, p. 30).) Returns, adjusted for both dividends 
and stock splits, are calculated as 

Pi,t " f i , t  + di., 
ri. , = 1, (11) 

Pi .t 

for all firms i = 1 . . . . .  N and times t = 1,2 . . . . .  n i. In Eq. (11), Pi,t denotes the 
last sale price or closing b id /ask  average at time t, di,, denotes a cash adjustment 
at time t, f~., denotes a price adjustment factor at time t, and t' denotes the time of  
the last sale price or closing b id /a sk  average at the last available price (provided 
that it is no more than ten trading days prior to period t). 

3.2. Testing methods  

We apply the MRS test to the sample of stock-return series using a variety of  
q-lengths. For each firm i, we select lengths of qi = nil/4, nil/3, nli/2, and 
qi = q * ( n i ) -  And, following Lo (1991) in his application to daily and weekly 
aggregate stock-return series, we select fixed q-lengths of  qi = q = 90, 180, 270, 
and 360 trading periods. 
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We then compare the test statistics corresponding to each of  the q-lengths for 
each of  the series to the 2.5%, 5%, 95%, and the 97.5% asymptotic critical values 
under Lo ' s  short-term dependence null. In addition, we compare the test statistics 
to bootstrapped 2.5%, 5%, 95%, and the 97.5% critical values for each firm. The 
bootstrapped critical values for the return series of  a firm are based on the test 
statistics stemming from 1,000 time-scrambled shufflings of  its return series. 

This bootstrap procedure, where the elements of  the series are time-scrambled 
and are thereby independent, is consistent with the null of  strong-mixing with 
ce-mixing coefficients satisfying Eq. (6). On the other hand, if the unscrambled 
series violates the moment condition in Eq. (4'), then its time-scrambled counter- 
parts will violate this condition as well, since time-scrambling preserves the 
unconditional properties of  the original series. (Depending on its nature, a 
violation of  the heterogeneity condition in Eq. (5) may or may not be preserved by 
time scrambling.) As a result, when using such bootstrapped critical values to 
evaluate a test statistic, the test is robust to violations of  the moment condition and 
certain violations of the heterogeneity condition of  the short-term dependence null, 
while being sensitive to departures from the strong-mixing assumption (cf. Table 
1, Panels A, B, and C'). This is not necessarily an undesirable property, given that 
in Lo ' s  framework strong-mixing is the salient feature distinguishing short- from 
long-range dependence. 9 

Alternatively, we should emphasize that our bootstrap procedure based on time 
scrambling necessarily omits any short-term dependence present in a series. 
Designing and applying alternative bootstraps which include short-term depen- 
dence is well beyond the scope of  this study. Nonetheless, we recognize that the 
nature of  our bootstrap procedure could lead to size distortions in the test statistics 
(cf. Table 1, Panels D and D'); and so, we exercise some caution in their 
interpretation. 

3.3. Results 

Figs. 1 and 2 display the asymptotic and bootstrapped 5% and 95% critical 
values of  the MRS test corresponding to the sample of  stock-return series in 
relation to the n and selected q values. ~0 Fig. 1 displays the left-tailed 5% critical 
values, while Fig. 2 displays those of  the right tail. 

9 It is also worthwhile to point out that time-scrambled series from stationary Gaussian fractionally- 
differenced ARMA processes satisfy all the conditions of Lo's short-term dependence null. In 
particular, the strong-mixing and heterogeneity-condition violations of such processes are nor preserved 
by time scrambling. 

l0 Figures displaying the left- and right-tailed 2.5% critical values are similar in nature: as a result, 
they are not shown here. In addition, the bootstrapped critical values corresponding to the q * (n i) cases 
are also not shown. 
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'(A) 

% 

(B) 
% 

Fig. 1. Bootstrapped 5% critical values of the MRS test statistic Q ( n ,  q).  

(A). For q-lengths of n 1/4, n I/3, and n 1/2 corresponding to the panel of return series. The curves 
along the (n, q) plane correspond to the 5% asymptotic critical value of 0.861. Looking from left to 
right, the plots correspond to q = n I/4,  n I/3, and n I/2. 
(B). For q-lengths of q = 90, 180, 270, 360. The lines along the (n, q) plane correspond to the 5% 
asymptotic critical value of 0.861. 
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Note in Fig. 1.A that the left-tailed bootstrapped critical values are generally 
smaller than the asymptotic critical value of 0.861 for the q-lengths of nil/4 and 
nl/3, and are generally larger than the asymptotic critical value for the q-lengths of 
nl/2. On the other hand, for the fixed q-lengths of 90, 180, 270, and 360 periods, 
the bootstrapped critical values shown in Fig. 1.B are generally greater than the 
asymptotic critical value, and the difference between the bootstrapped critical 
values and the asymptotic value increases with increasing q and decreasing n. 

The results in Fig. 2.A indicate that the bootstrapped right-tailed 5% critical 
values generally lie below the asymptotic critical value of 1.747 for sample-size 
dependent q-lengths. Whereas, for the fixed q-lengths excluding q = 90, the 
bootstrapped critical values shown in Fig. 2.B are well above the asymptotic 
critical value for the relatively small sample sizes. And, with increasing q and 
decreasing n, the bootstrapped critical values diverge from the asymptotic value. 
Alternatively, for the relatively larger sample sizes, the bootstrapped critical values 
are below the asymptotic value, but the difference between the asymptotic and 
bootstrapped values declines with increasing sample sizes. 

Overall, the results relating to the tests based on the sample-size dependent 
q-lengths of qi(ni)< nl/2 indicate a shift-to-the-left effect of the bootstrapped 
distribution relative to that of the asymptotic - an effect which could be indicative 
of survivorship bias (cf. Section 2.5). Alternatively, the results corresponding to 
the fixed q-lengths indicate that the MRS test is indeed sensitive to the selection 
of the autocovariance lag-truncation length. 

Table 3 reports the fractions of return series which are rejected at the left- and 
right-tailed 2.5% and 5% asymptotic and bootstrapped significance levels for each 
of the autocovariance lag-truncation lengths used in applying the test. Our 
conclusions will be drawn from the 5%-significant rejection rates corresponding to 
the sample-size dependent q-lengths, where the discrepancies between the asymp- 
totic and bootstrapped critical values are generally small relative to those relating 
to the fixed q-lengths, i i These results indicate that the left-tail rejections range 
from 2 to 6 percent, while right-tail rejections range from 4 to 10 percent. 

If all the return series in our sample conform to Lo's  short-term dependence 
null, we would expect roughly 5% of the return series to generate rejections by the 
test at 5% significance. By treating the event of a rejection by the test as an 
independent binomial random variable, we would expect the difference between 
the 5% rejection rate and the significance level of 0.05 to be approximately normal 
with a mean of zero and a standard deviation of 0.005. At 1% significance, only 
the rejection rates corresponding to the bootstrapped 95% critical values associated 
with the sample-size dependent q-lengths of qi(n  i) equal to nl/3 and nil/2 
indicate an over-abundance of rejections. 

ii Throughout the remainder of the paper we will ignore the results of the tests bases on fixed 
q-lengths. 
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Table 3 
Fractions of return series for which asymptotic and bootstrapped MRS test statistics yield 2.5% and 5% 
rejections a 

Left tail Right tail 

R(0.025) R(0.05) R(0.05) R(0.025) 

BHPV ASMP BTSP ASMP BTSP BHPV ASMP BTSP ASMP BTSP 

q*(n )  (0.00) 0.035" 0.026 0.060t 0.049 (0.99) 0.045 0.058t 0.021 0.036* 
n ~/4 (0.19) 0.027 0.021 0.051 0.039 (0.99) 0.043 0.060+ 0.022 0.034" 
n ~/3 (0.58) 0.018 0.014 0.041 0.036 (0.99) 0.050 0.072" 0.026 0.039 ~ 
n I/2 (0.99) 0.007 0.001 0.021 0.026 (0.99) 0.057 0.098" 0.022 0.054" 
90 (0.99) 0.004 0.012 0.009 0.023 (0.99) 0.050 0.11 I* 0.018 0.062" 
180 (0.99) 0.002 0.010 0.002 0.021 (0.20) 0.079'  0.127" 0.035" 0.076" 
270 (1.0) 0.001 0.013 0.004 0.026 (0.00) 0.134 * 0.132 0.085" 0.071 * 
360 (1.0) 0.000 0.018 0.001 0.035 (0.00) 0.191" 0.092" 0.135" 0.052" 

aUnder the assumption that the test statistics are independent across the stocks, the asterisks and 
daggers respectively denote 1 and 5 percent significant right-tailed rejections of the hypothesis that all 
the return series follow Lo's  short-term dependence null. BHPV denotes the Bonferroni-Hochberg 
upper bound on the p-value of this hypothesis for the asymptotic tests. 

On the other hand, cross-sectional dependence in asset returns could lead one to 
suspect that the MRS test statistics are not independent across the panel of return 
series. To address this issue we employ Bonferroni-Hochberg upper-bound p-val- 
ues (Hochberg, 1988) of the hypothesis that all of the return series conform to 
Lo's  short-term dependence null. These upper bounds hold regardless of whether 
or not the test statistics are dependent. Letting s* denote the Bonferroni-Hoch- 
berg upper-bound p-value, this upper bound is given by 

s * =  min [ ( N - j + I ) P j ] ,  (12) 
1 < j < _ N  

where {Pj} denotes the p-values of test statistics ordered from lowest to highest. 
Table 3 shows these p-values corresponding to the asymptotic tests. ~2 Only for 
the left-tailed tests based on q*(n) are the p-values less than conventional 
significance levels. 

~2 These p-values are not computed for the bootstrapped tests. Given that the bootstrap tests are bases 
on 1,000 time-scrambled shuffiings of the return series, the corresponding p-values are bounded by 
P) < 0.001 for all j = 1,... , N =  1952. As a result, the Bonferroni-Hochberg p-values have essentially 
no power in rejecting the null when bases on the bootstrapped critical values. 

Fig. 2. Bootstrapped 95% critical values of the MRs test statistic Q(n, q). 

(A). For q-lengths n I/4, n I/3, and n I/2. The curves along the (n, q) plane correspond to the 95% 
asymptotic critical value of 1.747. Looking from left to right, the plots correspond to q = n I / 4 ,  n 1/3, 
and n I/2. 

(B). For q-lenghts of 90, 180, 270, and 360. The lines along the (n, q) plane correspond to the 95% 
asymptotic critical value of 1.747. 
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Because all the rejection rates are relatively small and because the majority of 
the 5% rejection rates are not significantly different from 0.05 (at 1% significance), 
one conclusion which can be safely drawn from the results is that long-range 
persistent and antipersistent behavior is not a widespread characteristic of  common 
stocks. 13 Moreover, given some of the results in Tables 1 and 2 and Fig. 1.A, it is 
unclear that the series for which the test statistics yield rejections of  Lo ' s  
composite null do in fact display evidence of  long memory. For this reason, we 
take a closer look into the nature of  the MRS rejections in the next section. 

4. A logit study of MRS test rejections 

To provide further insight into the possible economic and statistical explana- 
tions for the rejections by the MRS test, we present in this section the results of  an 
exploratory logit study of  the event of a test rejection. The logit study is structured 
so that we can better assess whether and how the test is linked to characteristics of  
firms such as their return distributions, ex-post survival, size, systematic risk, and 
industry affiliation. This section begins with a description of the dependent and 
independent variables used in the logit study. 

4.1. Dependent and independent variables 

We restrict our attention in the logit study to test rejections relating to 5% right- 
and left-tailed critical values. For a given tail (T---{Left Tail, Right Tail}), 
q-length formula (QLF = qi(ni)), and asymptotic or bootstrapped critical-value 
type ( C V T =  {Asymptotic, Bootstrapped}), the dependent variable in the logit 
models, REJECTi(T, QLF, CVT), assumes a value of 1 (0, otherwise) if the MRS 
test statistic corresponding to (T, QLF, CVT) for stock i indicates a 5%-significant 
rejection. The averages across the sample of stocks of  these REJECT variables are 
reported in the rejections rates of  Table 3. 

Several independent variables are used in the logit specifications to account for 
such rejections. The sample averages, standard deviations and cross-correlations of  
these independent variables are reported in Table 4. The independent variables 
include a constant term and both merger and failed-firm indicator variables, MRG i 
and FAlL i. The merger and failed-firm variables are respectively assigned a value 
of  1 (0, otherwise) if firm i is merged (delisting codes 200 and 300 in the 1991 
Daily CRSP Files) and if the firm is either liquidated or dropped from its exchange 

13 This conclusion is confirmed by testing for long memory using the Geweke and Porter-Hudak 
(1983) test. Although not reported here, results based on the GPH test indicate that the proportion of 
return series which at 5% significance display evidence of long memory is roughly 5%. Moreover, at 
conventional significance levels, tests based on the GPH test cannot reject the hypothesis that all of the 
return series are short-term dependent. 
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Tab le  4 

S a m p l e  a v e r a g e s ,  s t anda rd  dev ia t ions ,  and c ros s -co r re l a t ions  be tw e e n  the var iab les  used in the logi t  

r e g r e s s i o n s  a 

S a m p l e  a v e r a g e s  and s tandard  dev i a t i ons  

A V G  S S D  

MRG 0 .3150  0 .4646  

FAIL 0 .0240  0 .1533  

L_A CT/7420  0.2783 0.3561 

L_MRG/7420  0. I 185 0 .5545 

L_FAIL/7420 0 .0059  0 .0457  

SIZE. 1000 0.6471 1.8400 

BETA 0 .8840  0 .4229  

ALPHA. 1000 0 .1995 0 .8482  

NTF 0 .0234  0.0601 

MFG 0 .4344  0 .4958 

CT& U 0.0983 0 .2978 

R& WTR 0.0906 0 .2872 

FI&RE 0.2223 0 .4159  

SRV 0.0686 0 .2529  

Cros s - co r r e l a t i ons  

MFG CT&U R&WTR FI&RE SRV 

MRG 0.20  : - 0 ,03 0 .04  - (I.21 - 0.01 

FAlL - 0.1')8 - 0 .03 - 0.01 0 .09 0 .02 

L_ACT 0.02 0 .19 :: - 0 .04 - 0.05 - 0 . 0 7 "  

L_MRG 0 . 1 8  0 .00  0.03 - 0 . 1 8  - 0 . 0 4  

L_FAIL - 0 . 0 6  - 0 , 0 3  - 0 . 0 2  0 . 0 9  0.01 

SIZE 0.07 ~' 0 ,04  - 0.03 - 0 .06  ~ - 0 . 0 5  

BETA 0 . 2 4 "  - 0 . 1 3  0 . 0 5  - 0 . 2 4  ~ 0 .08 ~' 

ALPHA 0.05 0 .02 0 .00  - 0 .09 0 .04  

NTF 0.01 - 0 .09 0.02 0.07 0.01') 

MXM - 0.04 0 .04 - 0 .03 0.08 - 0 .06 

MFG - 0 . 2 9  ~ - 0 . 2 8  ~ - 0 , 4 7  ~ - 0 .24:  

CT&U - 0 . 1 0 '  - 0 . 1 8 :  - 0 . 0 9  ~ 

R&WTR 0.171 - 0 . 0 9  + 

FI&RE - O. 15 ~ 

FAIL L_ACT L_MRG L F A I L  SIZE BETA ALPHA NTF MXM 

MRG - 0 . 1 1  ~ - 0 . 5 3  ~ 0 .78 ~ - 0 . 0 9 ;  - 0 . 1 ) 6 :  0 . 2 0  0 .12 

FAlL - 0 . 1 2  ~ - 0 . 0 8 :  0.83 + - 0 . 0 4  - 0 . 0 3  0.11 

L_ACT - 0 , 4 1 ;  - 0 . 1 0 ;  I ) . 3 2 '  - 0 . 0 4  - 0 . 0 3  

L_MRG - 0 . 0 7 :  0 .00  0 .13 0 .07 

L F A l L  - 0.03 0.02 0.07 

SIZE 0.09 ' - 0 .02 

BETA - 0.02 

ALPHA 
NTF 

- 0 . 0 7  = - 0 . 0 6  

0 .02 - O. 1 3  

- 0 . 1 5  0 . 1 1  

- 0 . 1 0  - 0 . 0 2  

0 .00  - 0 .  I 0 

- 0 . 1 2 :  0.11 : 

-0 .31 0.01 

0.01 -0 .03  

- 0 . 1 9  

a A s t e r i s k s  deno te  5% nomina l ly  s ign i f i can t  c ross -cor re la t ions .  D a g g e r s  denote  cor re la t ions  b e t w e e n  

va r i ab le s  w h i c h  are d e p e n d e n t  by cons t ruc t ion .  
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(delisting codes 400-700).  Firm-lifetime variables for active, merged, and failed 
firms (L  A C T  i, L MRG i, and L_I:AIL i) are also used. 14 L_MRGi and L FAIL i 
assume values of n i . M R G  i and n i . F A I L  i. Similarly, L_ACT~ is defined as 
h i . A C T  i where ACT i is an indicator variable which takes on a value of 1 (0, 
otherwise) if the firm is listed as active on its exchange at the end of 1991 
(delisting code 100). 

Industry-affiliation dummy variables based on one-digit SIC codes are also 

included in the logit models. The variables MFG i, CT& U i, R &  WTR i, FI&RE, ,  
and SRV~ take on a value of 1 (0 otherwise) if firm i is affiliated with the 

manufacturing industry (one-digit SIC codes 2 and 3), the communications, 
transportation, and utilities industries (code 4), retail and wholesale trade (code 5), 
finance, insurance, and real estate (code 6), and services (codes 7 and 8). 

The variable SIZE~ denotes the average (over the lifetime of the ith firm) of the 
ratio of the market value of firm i 's  shares outstanding to the sum of the market 
value of the shares outstanding for all the firms in the sample which traded during 
the ith firm's lifetime. To describe the SIZE~ variable more precisely, let l~(t) 
denote an indicator function which assigns a value of 1 (0, otherwise) if t ~ T,, 

where ~ is defined in Section 3.1. Also, let the number of firm i 's  shares 
outstanding at time t be denoted by s~. t. The SIZE, variable is then given by 

- I  

SIZE,= [n,]-' E (p,,,' <,) !X t) "PJ,, s i ,  
t~r, j 

(13) 

The variables ALPHA i and BETA i respectively denote a risk-adjusted average 
excess (or net-risk-free) return on stock i and a variable reflecting firm i 's  
exposure to systematic risk. BETA i is defined as the ratio of the sample covari- 
ance of firm i 's  excess returns with the CRSP value-weighted market excess 
returns to that of the sample variance of the market excess returns. The daily 
returns on three-month Treasury bills serve as a proxy for the risk-free rate. For 
clarity, let {rl. ,} and {r~. t} denote the excess return series of stock i and the market 
proxy. BETAi can then be expressed as 

t i 

X r ,t ~'~M H i  , 

t i 

(14) 

~4 Recalling the notation in Section 3. l. for {t = 1, 7420}~ T,, the firm-lifetime variables yield an 
accurate value for the lifetimes of a merged or failed firm. For {t = 1}~ T, and {t = 7420}~ ~, these 
variables yield an accurate value for the length of existence of an active firm up to December 31, 1991. 
Alternatively for {t = 1} ~ ~, the variables give a downward biased value of the lifetime of the firm. 
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where i~i(n i) and tzM(n i) denote the sample means of the return series corre- 
sponding to firm i and the market over t ~ T,. The average risk-adjusted excess 
return, ALPHA i, is then given by 

ALPHA i = tzi( ni) - B i • tXM ( n i ) .  (15) 

Clearly, these ALPHA and BETA variables are very crude estimators of 
risk-adjusted average returns and market-risk exposures. Our interpretation of 
results based on these variables bear this point in mind. 

Lastly, two other independent variables are included in the logit model, viz. 
NTF i, and MXM i. NTF~ denotes the proportion of  trading days during which firm 
i 's  stock was not traded, and MXM, denotes the 5% right-tailed Loretan and 
Phillips (1994) maximal-moment estimate associated with firm i 's  return series. ~5 

4.2. Results 

Table 5 reports the maximum likelihood parameter estimates and their asymp- 
totic t-statistics for the logit models. ~6 Although logit models for the rejections 
corresponding to each of the sample-size dependent q-lengths were estimated, we 
choose to report the results only for the models corresponding to the q-lengths of  

J/4 and q*(ni) .  The results for the other cases are qualitatively similar. The ni 
conclusions we draw from the statistical results of  the logit study are based on a 
nominal two-sided significance level of 5%. 

The results in Table 5 indicate that the merger, lifetime of merged firms, 
risk-adjusted average return, and maximal-moment variables significantly influ- 
ence the event of a left-tailed rejection by the MRS test across the QLF and CVT 
cases considered. In addition, for the QLF cases of qi = nY 4 the results indicate 
that the market-risk variable, BETA, also influences the event of a left-tailed 
rejection. The effects on the probability of a left-tailed rejection are positive for 
the MRG and MXM variables, and are negative for the others. The results across 
the QLF and CVT cases also indicate that the probability of a right-tailed rejection 
is significantly influenced by the maximal-moment and risk-adjusted average 
return variables. The effect on the probability of  a right-tailed rejection is negative 
for MXM and is positive for ALPHA. 

f5 See Loretan and Phillips. 1994 (Section 3). Although not shown here, the proportions of firms for 
which the hypothesis /3 _> 4 is rejected at 5% significance are respectively 0.784 and 0.934 correspond- 
ing to the left- and right-tailed Loretan-Phillips maximal-moment estimates. On the bases of these 
results, fourth moments do not appear to exist for majority of common-stock returns. 

~6 We use the BFGS algorithm (see Press et al., 1988, pp. 324-324) to estimate the parameters and 
the asymptotic standard errors of the parameters estimates. 



396 C. Hiemstra, J.D. Jones / Journal ql'Empirical Finance 4 (1997) 373-401 

Table 5 

M a x i m u m  likelihood parameter  est imates and asymptot ic  t-statistics for Iogit models  of  the MRS test 

rejections at the 5% signif icance level using asymptot ic  and boots t rapped critical values ' 

Variable q: q * (1l) q: n 1/4 

Asymptot ic  Bootstrapped Asymptot ic  Bootstrapped 

Estimate T value Estimate T value Estimate T value Estimate T value 

5% left-tail rejections 

Intercept - 3 . 1 0 2  - 5 . 6 5 "  - 3 . 5 7 8  - 6 . 1 2  - 3 . 7 5  - 7 , 8 6  - 3 , 8 5 3  - 6 . 2 6 : '  

MRG 1.262 2.97 ' 1.060 2.29 1.471 3,47 : 1.487 2.77 

FAlL 30.312 0.94 32.457 1.05 26.457 1,41 28.652 0.98 

L ACT/7420 - 0 . 0 8 3  - 0 . 2 3  - 0 . 0 6 1  - 0 . 0 1 7  0,288 1.25 0.561 1.32 

L_MRG/7420 - 5 . 6 3 8  - 3 . 5 0  - 5 . 0 9 8  - 3 . 1 3  - 5 . 3 7 8  - 3 . 8 6 '  - 5 . 2 5 5  - 2 . 7 3  

L_FAIL/7420 - 2 7 6 . 9 3 0  - 0 . 9 1  - 2 9 3 . 2 2 3  - 1 . 0 0  - 2 3 9 . 1 5 0  - I . 3 8  - 2 5 0 . 5 8 0  - 0 . 9 1  

SIZE. 1000 0 .024 0.59 0.01)5 0.11 0.008 0.09 - 0 . 0 1 3  - 0 . 2 3  

BETA - 0 . 3 9 7  - 1.52 - 0 . 3 7 6  - 1.34 - 0 , 6 7 2  - 1 . 9 6  - 0 . 7 4 3  - 2 . 2 6  ~ 

ALPHA.IO00 - 0 . 3 6 8  - 2 . 4 3  '' - 0 . 3 1 8  - 2 . 1 2  - 0 . 4 7 3  - 2 . 9 9  - 0 . 2 5 7  - I . 6 9  

NTF - 0 .087 - 0.05 - 2 .456 - 1.04 0.003 0.00 - 0 .876 - 0.39 

MXM 0.321 2.62 * 0.381 3.08 0 .466 5.01 0.497 3.97 

MFG 0.161 0.45 0.303 0.76 0.337 1.22 0. .018 0.04 

CT&U 0.076 0.17 0.207 0.42 - 0 . 3 7 8  - 0 . 5 7  - 0 . 7 0 0  - 1.25 

R&WTR - 0 . 6 4 9  - 1 . 2 5  - 0 . 7 2 3  - 1 . 2 0  - 0 . 2 9 4  - 0 . 4 7  - 1 . 1 0 9  - I , 6 4  

FI&RE - 0 . 5 9 2  - 1 . 4 9  - 0 . 5 0 6  - 1 . 1 5  - 0 . 5 0 9  - I . 2 8  - 0 . 6 8 3  - 1 . 5 0  

SRV 0.434 0.97 0.702 1.47 0.838 3.34 ~ 0.247 0.44 

5% right-tail rejections 

Intercept - 1 . 6 0 4  - 1 . 9 4  - 1 . 1 2 5  - I . 5 7  - I . 5 5 6  - 1 . 8 9  - 1 . 0 4 2  - I . 3 4  

MRG - 0 . 3 7 9  - 0 . 8 6  - 0 . 2 1 3  - 0 . 5 2  - 0 . 6 0 7  - 1 . 3 4  - 0 . 3 0 4  - 0 , 7 3  

FAIL - 0 . 9 0 9  - 0 . 8 1  - 1 . 0 4 5  - 1 . 0 2  - 0 . 7 2 9  - 0 . 6 8  - I . 1 5 5  - l . l l  

L_ACT/7420 - 0 . 1 7 7  - 0 . 4 2  - 0 . 2 6 9  - 0 . 7 3  - 0 . 0 8 7  - 0 . 2 1  - 0 . 0 9 4  - 0 . 2 6  

L MRG/7420 - 0 . 8 2 1  - 0 , 8 4  - 0 . 7 0 0  - 0 . 7 6  0.062 0.06 - 0 . 3 9 3  - 0 . 4 2  

L_FAIL/7420 3.835 1.35 3.809 1.45 3.540 1.26 4 .036 1.52 

SIZE. IO00 - 0 . 0 1 1  - 0 . 1 5  - 0 , 0 5 0  - 0 . 5 0  - 0 . 0 2 2  - 0 . 2 4  - 0 . 0 5 4  - 0 . 5 5  

BETA 0.092 0.33 0.011 0.04 0.328 1.17 0 .279 1.15 

ALPHA. 1000 0.565 4.56 ~ 0.615 5.08 0.507 3.75 ' 0 .658 5.56 ' 

NTF 2.163 1.49 1.237 1,13 - 0 . 1 3 0  - 0 . 1 0  1.885 1.33 

MXM - 0 .568 2 .09"  - 0 .589 - 2.62 - 0 .600 - 2.14 ' - 0 .700 - 2.77 • 

MFG - 0 . 3 3 7  - 0 . 7 9  - 0 . 3 8 4  - 0 , 9 8  - 0 . 4 8 3  1.15 - 0 . 4 9 8  - 1 , 4 1  

CT&U 0.796 1.68 0.582 1,34 0 .579 1.24 0.624 1.55 

R& WTR 0,325 0.68 0 .066 0,14 - 0 .137 - 0.27 0.(128 0.06 

FI&RE - 0 . 3 0 7  - 0 . 7 0  - 0 . 1 3 9  - 0 , 3 4  - 0 . 4 2 7  - 0 . 9 8  - 0 . 2 3 9  - 0 . 6 3  
SRV 0.000 0.00 - 0 . 0 7 7  - 0 . 1 5  - 0 . 1 2 7  - 0 . 2 4  - 0 . 2 1 5  - 0 . 4 5  

a The dependent  variables correspond to tests based on q- lengths  of  q = n ~/~ and q = q (t2). Asterisks 

denote 5% nominal ly  significant parameter  values corresponding to a two-sided test. 

4.3. D i s c u s s i o n  

I f  t h e  e v e n t  o f  a l e f t - t a i l e d  M R S  t e s t  r e j e c t i o n  w e r e  t h e  r e s u l t  o f  s u r v i v o r s h i p  

b i a s ,  w e  w o u l d  e x p e c t  p o s i t i v e  s i g n s  o n  t h e  c o e f f i c i e n t s  a t t a c h e d  t o  t h e  M R G  a n d  
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FAIL variables and negative signs on the lifetime variables L ACT, L_MRG, and 
L_FAIL in the logit models  of the left-tailed rejections. With a few exceptions this 
is indeed the case, but only for the merger  variables are the coefficients signifi- 
cant. We conclude,  then, that there is some evidence l inking the left-tailed 
rejections to survivorship bias. 

We  are unable  to provide a satisfactory explanat ion for the significantly 
negative coefficients on the BETA variable in some of  the logit models of  the 
left-tailed rejections. To the extent that the BETA variable measures the exposures 

of the firms to market risk and perhaps therefore to their prospects for survival,  we 
would expect positive signs on the BETA coefficients. ~7 Instead, we simply 

conclude that the event  of a left-tailed rejection by the MRS test appears to be 
l inked to firms with relatively low market risk. 

If the sole effect of  the MXM variable were to indicate F M C  failures, we 
would expect insignif icant  coefficients on MXM in the logit models  of the 
bootstrapped test rejections, and negative (positive) signs on the coefficients of 

MXM in the logit models  of  the left-tailed (right-tailed) asymptotic test rejections 
(cf. Section 2.5). Instead, the coefficients on the MXM variable in the logit 
models of the left-tailed (right-tailed) asymptotic and bootstrapped MRS test 
rejections are all s ignificantly positive (negative). As a result, F M C  failures cannot  
account  for the net effect of  the MXM variable on the tests. Js For this reason, we 
therefore conclude that the MXM variable may proxy for some other firm 

characteristic which manifests itself in the MRS tests by shifting the test distribu- 
tions to the right of  their corresponding null distributions. Whether  or not this 
effect is an indicator of  persistent long memory  is unclear. We leave for further 
study a closer examinat ion of this question. 

And lastly, the return series of  firms with relatively high risk-adjusted average 
returns are more (less) likely to be rejected by right-tailed (left-tailed) tests. To the 
extent that large ALPHA values represent market mispricing, and if the right-tailed 
rejections indicate persistent long memory,  this result suggests a possible link 

between right-tailed MRS test rejections, persistent long memory,  and market 
mispricings in a small fraction common  stocks. But, on the basis of our  analysis,  

we emphasize  that such a link is highly speculative. 

17 See, for example, Chan and Chen (1991) and Queen and Roll (1987) lor studies were firm 
performance is linked to other firm characteristics. The results of Chan and Chen suggest that a firm's 
market-risk exposure should be positively linked to poor perlormance, while Queen and Roll conclude 
that market risk is a poor [orecaster of firm mortality. 

rs This result is confirmed in an alternative way. There are 65 firms in our panel for which the 
Loretan-Phillips tests of the hypothesis /3 _< 4 cannot be rejected at 5% significance. Although not 
reported here, there are no excessive right-tailed MRS test rejection rates corresponding to the return 
series of these firms. Alternatively, the majority of rejection rates associated with the bootstrapped and 
asymptotic MRS tests based on q-lengths of q :' (i1) and n I/4 are excessive at 5% significance. 
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When taken as a whole the excessive bootstrapped right-tailed rejection rates, 
the connection of the right-tailed rejections to large risk-adjusted average returns, 
and the apparent freedom of the right-tailed rejections from survivorship and MCF 
effects, we conclude that there is some evidence to suggest that the relatively few 
return series which yield right-tailed rejections appear tied to persistent long 
memory. 

5. Summary 

Fama (1991) argues that research on market efficiency should be evaluated in 
terms of whether it improves our ability to describe the time-series and cross-sec- 
tional variation of security returns. Much recent work has addressed the issue of 
the presence of s lowly-decaying components in stock prices because of the 
controversial implications of such a finding for martingale models of asset prices 
used in financial economics. This work has produced mixed results. The fre- 
quently-cited studies by Fama and French (1988) and Poterba and Summers 
(1988) find evidence of long horizon mean-reverting behavior in stock returns 
which is consistent with fads, irrationality, speculative bubbles, and noise trading. 
Brown et al. (1993), Kim et al. (1991), Richardson (1993), and Richardson and 
Stock (1989) among others suggest, however, that these results showing long-run 
behavior may be spurious. Moreover,  Kandel and Stambaugh (1989) argue that 
more conventional models of short-term dependence in stock returns can explain 
the long-run findings of Fama and French and Poterba and Summers. And, the 
time-series models which underpin their findings are consistent with the Lo (1991) 
short-term dependence null. 

The contribution of this paper is to provide additional insight into this debate by 
focusing on the time-series behavior of daily returns on common stocks. Previous 
studies have for the most part examined aggregate stock returns, with the 
exception of Greene and Fielitz (1977). Moreover,  we focus on a particular type of  
long-term dependence in asset returns, viz. long memory, which appears unrecon- 
cilable with market efficiency. We apply Lo ' s  MRS test for long memory to the 
daily returns of 1,952 common stocks. In contrast to the conclusions of Greene 
and Fielitz in particular and those of  Peters (1989, 1991, 1992, 1994) in general, 
we find that long memory is not a widespread characteristic of common stocks. 

We also find that the MRS test is sensitive to the choice of autocovariance 
lag-truncati0n length, to moment-condition failures, and to survivorship bias. 

~9 An alternative interpretation of the excessive right-tailed rejection rates associated with the 
bootstrapped tests is that they possibly stem from shifts in the means of the returns series. As 
previously mentioned, both the GPH and MRS tests are very sensitive to shifts in means. We therefore 
consider this alternative view unlikely, since the rejection rates corresponding to the right-tailed 
asyrnptotic MRS tests and GPH tests do not indicate excessive rejections. 
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Moreover,  estimates from logit models of the event of  a rejection by the MRS test 
generate some results which are consistent with the effects of  survivorship bias in 
the MRS test statistics associated with our panel of  return series. 

Alternatively, the results from our logit study also indicate that the returns of  
firms with heavy-tailed distributions and those with large risk-adjusted average 
returns are more likely to generate right-tailed MRS test rejections. We conclude 
that the relatively few return series which are rejected by the right-tailed test 
appear to be tied to persistent long memory. 
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