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Abstract

In this paper, we estimate ARFIMA–FIGARCH models for the major exchange rates

(against the US dollar) which have been subject to direct central bank interventions in the last

decades. We show that the normality assumption is not adequate due to the occurrence of

volatility outliers and its rejection is related to these interventions. Consequently, we rely on a

normal mixture distribution that allows for endogenously determined jumps in the process

governing the exchange rate dynamics. This distribution performs rather well and is found to be

important for the estimation of the persistence of volatility shocks. Introducing a time-varying

jump probability associated to central bank interventions, we find that the central bank

interventions, conducted in either a coordinated or unilateral way, induce a jump in the process

and tend to increase exchange rate volatility.
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1. Introduction

Given the apparent lack of any structural dynamic economic theory explaining the

variations in the first two conditional moments of daily and weekly exchange rates,

econometricians have extended traditional time series tools such as Autoregressive

Moving Average (ARMA) models for the mean to essentially equivalent models for the

variance. The Autoregressive Conditional Heteroscedasticity (ARCH) models (Engle,

1982) and its numerous extensions are now commonly used to describe and forecast

changes in volatility of financial time series (see Palm, 1996).

The estimation of these models is usually done by approximate Quasi-Maximum

Likelihood (QML), assuming that the innovations are normally distributed. Indeed, even if

unrealistic, the normality assumption may be justified by the fact that the Gaussian QML

estimator is consistent provided the conditional mean and the conditional variance are

specified correctly, see Weiss (1986) and Bollerslev and Wooldridge (1992) among others.

The first goal of the paper is to show, given the specification choice of the first two

conditional moments, that the occurrence of outliers is primarily responsible for the

rejection of the Gaussian assumption. In turn, these outliers may be caused by specific

financial events like direct central bank interventions in the foreign exchange market.

Therefore, the occurrence of these events have strong implications for the modelling

strategies regarding these series. Accordingly, in order to model this feature, we introduce

a normal mixture distribution, the Bernoulli-normal that allows for the possibility of

endogenously determined jumps. We find that for three out of the four considered

exchange rates, a mixture distribution turns out to be supported by the data.

While capturing the short-run dynamics of exchange rates, the constant jump

probability specification yields few economic and financial insights. Building on the

empirical literature on direct central bank interventions in the foreign exchange

markets (Dominguez, 1998), we extend the basic normal mixture model and introduce

a time-varying jump probability which is associated with the direct purchases and

sales of foreign currency conducted by the major central banks. It is found that the

central bank interventions, carried out either in a coordinated or in a unilateral way,

induce a jump in the process and thus tend to increase exchange rate volatility.

The paper is organized as follows. Section 2 describes the specification choice retained

for the conditional mean and the conditional variance, presents several test statistics and

describes the dataset used in the empirical application. Section 3 is devoted to the outliers

detection issue and presents the Bernoulli-normal distribution. Section 4 extends the

previous analysis by modelling the jump probability while Section 5 concludes.
2. Double long memory models

Over the last decade, the analysis of high frequency financial time series data has

focused on the long memory property. As an example, weekly and daily exchange rate

returns have been found to be well characterized by fractionally integrated processes.

Until recently, the empirical studies have been concerned with fractional roots in either

the conditional mean or in the conditional variance of these returns.
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2.1. ARFIMA–FIGARCH

In the conditional mean, the discrete time series representation of a fractionally

integrated process has been introduced by Granger and Joyeux (1980) and Hosking

(1981). Denoting L as the lag operator (Lyt
k = yt� k, with kz 0), and by replacing the

difference operator (1� L) of an ARIMA process with the fractional difference operator

(1� L)f, where f captures the degree of fractional integration, they define the so-called

Autoregressive Fractionally Integrated Moving Average (ARFIMA) process. Noting yt as

one hundred times the return of exchange rate st ( yt= 100� [ln(st)� ln(st� 1)]), where st is

the price of the currency under investigation in terms of the USD, the ARFIMA (n, f, s)
model is formally defined as:

WðLÞð1� LÞfðyt � lÞ ¼ HðLÞet ð1Þ

et ¼ rtzt; ð2Þ

where l is the unconditional mean of process (1), W(L) = 1�w1L� . . .�wnL
n

and H(L) = 1 + h1L + . . . + hsL
s are the usual AR and MA lag polynomials of respective

orders n and s (with all roots lying outside the unit circle), rt is a time-varying

conditional variance (see below) and zt is an independent and identically distributed

(i.i.d.) random variable with zero mean. For ease of notation, let us rewrite yt as

yt = l̄t(l,W,H,f) + et, where l̄t =E( ytjXt� 1), i.e. the conditional mean of yt, Xt is the

information set at time t, W=(w1,. . .,wn)Vand H=(h1,. . .,hs)V.
Obviously, f = 0 corresponds to a stationary process in the exchange rate returns. If f

lies between 0 and 1/2, the process is stationary and is said to be persistent. If f lies

between 0 and � 1/2, the process displays some short memory and is said to be

antipersistent.1 The major exchange rates (except the British pound) have been found to

display long memory properties by Cheung (1993) and thus their dynamics may be

expected to be matched rather well by the ARFIMA specification.

Similar research on the volatility side (Baillie et al., 1996a) has led to an extension of

the ARFIMA representation in et
2, leading to the Fractionally Integrated GARCH

(FIGARCH) model. The FIGARCH ( p,d,q) process is given by:

r2
t ðx; b;/; dÞ ¼ x þ f1� ½1� bðLÞ
�1/ðLÞð1� LÞdge2t ; ð3Þ

where rt
2 is the conditional variance of yt, d is the fractional degree of integration of et

2;

b=(b1,. . .,bp)V, /=(/1,. . .,/q)V, b(L) = b1L + . . . + bpL
p and /(L) = 1�/1L� . . .�/qL

q are

the lag polynomials of respective orders p and q of which all roots lie outside the unit

circle. An interesting feature of the FIGARCH model is that it nests both the GARCH
1 Furthermore, if f<� 1/2, the process is non-invertible. If f>1/2, the process is not stationary while if f= 1,
the process has a unit root.
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(Bollerslev, 1986) model for d = 0 and the IGARCH (Engle and Bollerslev, 1986) model

for d = 1. As advocated by Baillie et al. (1996a), the IGARCH process may be seen as too

restrictive as it implies the infinite persistence of a volatility shock. Such dynamics are

contrary to the observed behavior of agents and do not match the persistence observed

after important events (see Baillie et al., 1996a; Bollerslev and Engle, 1993). By contrast,

for 0 < d < 1, the FIGARCH model implies a long memory behavior, i.e. a slow decay of

the impact of a volatility shock. The FIGARCH class of processes is not covariance

stationary, but is strictly stationary and ergodic for da[0,1]. For a FIGARCH (1,d,1)

model, sufficient conditions for the conditional variance to be strictly positive are given in

Baillie et al. (1996a).2

The estimation of the ARFIMA–FIGARCH model is done by approximate (Q)ML.3

Following the standard procedure in the literature, the truncation order of the infinite

polynomials (1� L)f and (1� L)d is set to 1000 lags while initial conditions have been set

to et* = 0 and et*
2=E(et

2) for t* = 0,� 1,� 2,. . .,� 1000 and t = 1,2,. . .,T, where T is the

number of observations.4 Note that Teyssière (1997) shows that the approximate (Q)ML

estimates have nice properties: root� n consistency, asymptotic normality and negligible

bias.

Applications of FIGARCH models to exchange rates were first proposed by

Baillie et al. (1996a) for the DEM and by Tse (1998) for the YEN. Both papers

estimate a FIGARCH (1,d,0) model but do not consider the case of a fractional root

in the mean. The results of Baillie et al. (1996a) suggest that the FIGARCH model

is much closer to the IGARCH model (but nevertheless different in its implications)

while Tse (1998) shows that it exhibits a stable GARCH type of behavior.5

Similarly, estimation of ARFIMA processes with time-varying heteroskedasticity

is fairly new in the literature. Baillie et al. (1996b) estimate an ARFIMA (n,f,s)–
GARCH ( p,q) process for the post-war inflation rates of several industrial countries,

while Tschernig (1995) and Lecourt (2000) have found evidence of long memory in

the conditional mean of exchange rate returns computed on a high frequency basis.

The joint estimation of fractional processes both in the mean and in the variance has

been recently proposed by Teyssière (1997). Such a model is referred to as a double

long memory or ARFIMA–FIGARCH model. Recent applications to high frequency

exchange rate returns have been proposed by Teyssière (1998) and by Beine et al.

(2002b). The results suggest that double long memory models may characterize the

dynamics of exchange rate returns.
2 Some of these sufficient conditions are overly restrictive. For instance, they specify x>0. By contrast, our

estimationprocedure allows x to be negative but, following Nelson and Cao (1992), checks the positiveness of the

conditional variance on a case-by-case basis.
3 The estimations have been carried out using Gauss 3.6. The results have been reproduced using a slightly

modified version of G@RCH 2.2 (see Laurent and Peters, 2002), an Ox package with a friendly dialog-oriented

interface dedicated to the estimation and forecast of various univariate ARCH-type models.
4 Furthermore, it is possible to use presample values in order to estimate the ARFIMA part, as proposed by

Teyssière (1997). The change in the results is marginal, so that we use the whole sample to estimate the model.
5 For an explanation of these divergent results, see Beine et al. (2002b).
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2.2. Tests

A critical part of our analysis will be devoted to diagnostic tests, either to

discriminate between competing distributions or to assess the relevance of the ARFIMA–

FIGARCH framework. We primarily base our assessments on five different evaluation

procedures.

The first two tests are conducted on the standardized residuals denoted by zt. The first

one concerns estimators of the skewness and excess kurtosis coefficients b3 and b4. The

second one is the test statistic proposed by Brock et al. (1987), denoted BDS (m), where m

is the embedding dimension.6 The BDS test checks the null hypothesis of i.i.d. residuals.

This hypothesis is important because our other two evaluation procedures, a nonparametric

rank test and the Pearson goodness-of-fit test, require independent observations. Thus, by

failing to accept the i.i.d. hypothesis in the standardized residuals, it would be unclear how

to correctly interpret a rejection of the null hypothesis implied by these two tests.

The third is a nonparametric rank test introduced by Wright (1998). This test can be

used as a misspecification test suitable for GARCH and FIGARCH models. For fixed l,

the test statistic S(l) is given by:

SðlÞ ¼ T
Xl

i¼1

qðs1t; s1t�iÞ2; ð4Þ

where q(.,.) denotes the sample autocorrelation function and s1t is given by:

s1t ¼ rðz2t Þ �
T þ 1

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT � 1ÞðT þ 1Þ

12

r
;

,
ð5Þ

where r(zt) is the rank of zt among z1,z2,. . ., zT. Under the null of a correct specification in

the conditional variance, Wright (1998) proposes to use a v2(l) distribution. The

motivation for using this test is that it is more powerful than alternative tests when zt is

highly non-normal, which seems particularly relevant in financial data.

Finally, since our objective is to assess the relevance of various underlying distribu-

tions, our last test is the Pearson goodness-of-fit test that compares the empirical

distribution of zt with the theoretical one. In order to carry out this testing procedure, it

is necessary to first classify the residuals in cells according to their magnitude, see Palm

and Vlaar (1997) for more details. For a given number of cells denoted g, one computes

the following test statistic:

PðgÞ ¼
Xg
i¼1

ðni � EniÞ2

Eni
; ð6Þ

where ni is the number of observations in cell i (based on the ML estimation) and Eni is

the expected number of observations (based on the ML estimates). For i.i.d. observa-
6 More precisely, we report the t-statistics of these measures. The distance measure is chosen according to the

spread of the data (see Brock et al., 1987). For all series, we end up with a distance measure equal to 0.6. Notice

that the conclusions of the tests are robust across all possible values for m.
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tions, under the null of a correct distribution, P( g) is distributed as a v2( g� 1).7 As

explained by Palm and Vlaar (1997), the choice of g is far from being obvious. For

T= 2252, these authors set g equal to 50. Given that the number of cells must increase at

a rate equal to T 0.4, we use g = 70 for our full sample size (Kendall and Stuart, 1967).

We also provide the Schwarz (SC) information criterion to compare the different

specifications. This statistic complements the evaluation provided by likelihood ratio

tests when the distributions are nested.

2.3. Data description

The analysis has been carried out on the four major currencies against the US dollar

(USD), i.e. the Deutsche mark (DEM), the Japanese yen (YEN), the French franc (FRF)

and the British pound (GBP) using daily data over the period 1980–1996 (the number

of observations T equals 4221 for the YEN and 4313 for the other currencies). The data

are provided by the International Bank for Settlements and refer to the spot market.

These exchange rates data are mid rates quoted, respectively, in Frankfort at 2:00 p.m.

(GBP, FRF and DEM) and in Tokyo (YEN) at 10:00 a.m. each day.
3. Mixture distributions

The choice of an appropriate distribution in the ML estimation procedure is an

important issue. The normality assumption may be justified by the fact that the Gaussian

QML estimator is consistent provided the conditional mean and the conditional variance

are specified correctly.

3.1. Non-normality and outliers detection

Preliminary results based on the Gaussian QML—not reported here to save space, but

available upon request—indicate that for the four currencies, we fail to reject at

conventional significance levels the null of no fractional integration in the mean.

Therefore, we reestimate the models constraining f to be zero. This questions the

relevance of long memory behavior in exchange rate returns and contrasts with the

results of Cheung (1993), Tschernig (1995) and Lecourt (2000). The estimates of the

fractional degree of integration in the variance (d) are in line with the findings of Tse

(1998), Teyssière (1998) or Beine et al. (2002b): d equals 0.58, 0.64, 0.39 and 0.30,

respectively, for the DEM, FRF, GBP and the YEN. Misspecification tests based on the

nonparametric rank tests appear to validate the ARMA–FIGARCH framework and the

BDS tests support the i.i.d. hypothesis for the standardized residuals. As a whole the
7 Actually, the asymptotic distribution of P( g) is bounded between a v2( g� 1) and a v2( g� k� 1) where k

is the number of parameters. Since our conclusions hold for both critical values, we report the significance levels

relative to the first one.
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ARMA–FIGARCH framework seems to match the dynamics of daily exchange rate

returns and is a satisfying starting point to study the nature of the underlying

distributions.

Turning our attention to the relevance of the distributions, most of the results,

unsurprisingly, question the relevance of the Gaussian assumption. The use of the

normal distribution leads to excess skewness and excess kurtosis. As a consequence, this

density is clearly rejected by the Pearson goodness-of-fit tests.

The excess skewness and kurtosis may be due to the occurrence of numerous

financial and monetary events that have taken place during our period of investigation.

These events might lead to the occurrence of ‘‘Level and Volatility Outliers’’ (see Hotta

and Tsay, 1998) that the normal distribution cannot take into account. A usual approach

to identify outliers is the mean average deviation (MAD) procedure. In this procedure,

an observation is characterized as an outlier if yt>jj[c*med(jyt�med( yt)j]j, where med

is the median operator. c is a constant and is derived from (1/q0.75), where q0.75 is the

75th percentile of the normal distribution. The choice of j remains arbitrary but values

of 2 or 3 are commonly used in practice. Applying the MAD procedure leads to either

91 (if j = 3) or 337 (if j = 2) outliers for the DEM. For the other exchange rates the

respective figures are 56 and 100 for the FRF, 122 and 422 for the GBP and 118 and

377 for the YEN.

Alternatively, Franses and Ghijsels (1999) propose an interesting approach to identify

‘‘additive outliers’’ (AO) in the volatility. Although Franses and Ghijsels (1999) apply this

procedure to a GARCH (1,1) model, the extension to a FIGARCH model is straightfor-

ward. The procedure is carried out in a sequential way and requires five steps, see Franses

and Ghijsels (1999) for details. Applying the Franses and Ghijsels’ approach to our data

allows us to quantify the number of ‘‘aberrant observations,’’ to identify these outliers and

to yield AO-corrected returns. The procedure leads to the identification of 103 outliers for

the DEM, 105 for the FRF, 100 for the GBP and 127 for the YEN. The results suggest that

the presence of outliers is primarily responsible for the rejection of the normality

assumption: adjusting for these outliers and reestimating the model leads to a dramatic

decrease of excess skewness and excess kurtosis on the standardized residuals (complete

results are also available upon request). The normality of the AO-adjusted returns is

supported for the DEM and to some extent for the FRF. The rejection levels for the GBP

and the YEN have also significantly decreased. It is worth pointing out that the estimated

persistence of volatility shocks (d) is significantly reduced (except for the YEN) and is

much more similar across currencies (about 0.36).

The high number of identified outliers for all the investigated currencies calls for the

use of another model. One way to reconsider the model is to introduce an endogenous

jump through the use of a normal mixture distribution. This jump probability may be

related to financial variables thought to influence the dynamics of short-run flexible

exchange rates.

3.2. Bernoulli-normal

In order to account for the numerous outliers detected in the previous subsection, we

rely on a jump-diffusion ARCH-type model that assumes that the returns are drawn from a
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mixture of normal distributions, i.e. a diffusion process combined with an additive jump

process.8 Let us define the following mixture process as follows:

yt ¼ l̄t þ rtzt; with probability ð1� kÞ ð7Þ

yt ¼ l̄t þ rtzt þ s þ
ffiffiffiffiffi
d2

p
zt*; with probability k; ð8Þ

where zt and zt* are i.i.d. N(0,1), E(zt zt*) = 0, k stands for the probability of a jump and is

drawn from a Bernoulli distribution (0 < k< 1), s is the mean of the jump distribution while

d2 captures the variance of the jump distribution. l̄t= l̄t (l,W,H,f) and rt
2 = rt

2(x,b,/,d)
are, respectively, the conditional mean and conditional variance of the diffusion process

and are defined as in Section 2.1.

This model can be rewritten as:9

yt ¼ Eðyt j Xt�1Þ þ et ð9Þ

etfð1� kÞNð�ks; r2
t Þ þ kNðs � ks; r2

t þ d2Þ; ð10Þ

where E( ytjXt� 1) = l̄t + ks, where ks is the conditional mean of the jump process. Notice

that in this specification, k is assumed to be constant over time.

The log-likelihood associated with this distribution takes the following form:

LBern ¼ � T

2
lnð2pÞ þ

XT
t¼1

ln

(
ð1� kÞ

r2
t

exp � ðyt � l̄tÞ2

2r2
t

" #

þ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
t þ d2

q exp � ðyt � l̄t � sÞ2

2ðr2
t þ d2Þ

" #)
: ð11Þ

It can be seen that d2 is the additional volatility related to the jump. It should be stressed

that while the normal mixture distribution can account for excess skewness, its introduc-

tion will also affect the conditional fourth moment of the residuals of our ARFIMA–

FIGARCH model (see on this point Appendix B of Vlaar, 1994).

One problem with mixture distributions is that the Pearson goodness-of-fit test

presented in Section 2 is no longer valid. The reason lies in the fact that, unlike for the

normal and Student-t distributions, standardization will not lead to i.i.d. residuals in a

model with time dependent variance. Palm and Vlaar (1997) have attempted to solve this

problem by redefining the sorting mechanism of the residuals. We thus use normalized
8 The following specification is similar to the one proposed by Neely (1999). This author considers this

framework in the context of a Bernoulli –Student distribution.
9 Vlaar and Palm (1993) show that under this mixture of normal distributions, E(et) = 0. This is done by

shifting the density by ks: see these authors’ works for more details.
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residuals (zt
n) instead of standardized residuals (residuals divided by their standard

deviation). Normalized residuals are obtained by reexpressing Eq. (10) to have N(0,1)

innovations (if the mixture of normal assumption holds), i.e. znt ¼ F�1½ð1� kÞFðyt�l̄t

rt
Þ þ

kFðyt�l̄t�s
rtþd Þ
, where F(.) and F� 1[.] are, respectively, the cumulative distribution function

and the quantile function of the standard normal density.

Note that lag order selection issues are important when building a dynamic model. To

determine the orders n, s, p and q of the ARFIMA (n,f,s)–FIGARCH ( p,d,q) we rely on

the Schwarz Bayesian Information Criterion which is known to lead to a parsimonious

specification.10 In a first step, we select the AR and MA terms, assuming a FIGARCH

(1,1) specification. Then, given the obtained ARMA specification (choice of n* and s*),

we compute the information criterion in order to choose the FIGARCH orders.11 As

shown in Table 1, an AR (1) specification has been retained for the DEM, FRF and the

YEN, while the GBP does not require to include ARMA components in the conditional

mean. Concerning the conditional variance, a FIGARCH (1,d,1) has been retained for

the DEM and a FIGARCH (2,d,0) for the other currencies.

Table 2 reports the estimation results for the Bernoulli-normal distribution. As a

whole, the results confirm the relevance of the ARMA–FIGARCH framework in

capturing the dynamics of exchange rates. All the rank tests fail to reject the null

hypothesis of an appropriate model. Interestingly, the null of a fractionally integrated

process in the conditional mean is still rejected for all currencies.

It may be seen that the contribution of the normal mixtures lies in the important

decrease in the excess skewness of the residuals. For the YEN and the DEM, which

were previously found to exhibit a skewed distribution, the skewness of the normalized

residuals is close to zero and statistically insignificant. This is also true for the FRF

and the GBP. For all the currencies under investigation, LR tests confirm that the

mixture distribution outperforms the normal distribution regardless the individual

significance for each of the three additional parameters (k, s and d2). Hence, it seems

relevant over such a long period to introduce the possibility of breaks and jumps in the

dynamics of exchange rate returns. Turning to the values of the parameter estimates,

we observe that for the DEM and the FRF, the size of the jump s is insignificant while

the additional volatility associated with the jump (d2) is significant. For the YEN, s is

significantly negative, which means that on average, the jump also shifts the density to

the left. This implies that the estimated normal mixture model captures mostly the

volatility outliers.

Goodness-of-fit tests indicate that the Bernoulli-normal distribution is appropriate for

capturing the dynamics of the DEM–USD exchange rate. Regardless of the value of g, i.e.

the number of cells used in the testing procedure, the relevance of this distribution is
10 The use of such an information criterion in ARFIMA–FIGARCH models remains to be investigated. Such

an investigation, while interesting in its own right, is beyond the scope of this paper.
11 Note that one could reiterate the selection procedure for the ARMA specification based on the optimal

FIGARCH parameterization. After one additional iteration, we obtain the same lag orders n* and s* as the ones

reported in Table 1.



Table 1

Order selection of the ARMA–FIGARCH model with Bernoulli-normal distribution using the Schwarz Bayesian

Information Criterion

ARMA (n,s) –FIGARCH (1,d,1) DEM FRF GBP YEN

n= 0, s = 0 2.1394 2.0564 1.9598 1.9700

n= 0, s = 1 2.1391 2.0563 1.9612 1.9705

n= 0, s = 2 2.1409 2.0581 1.9628 1.9724

n= 1, s = 0 2.1388 2.0561 1.9610 1.9696

n= 1, s = 1 2.1407 2.0582 1.9622 1.9712

n= 1, s = 2 2.1422 2.0588 1.9640 1.9731

n= 2, s = 0 2.1405 2.0580 1.9625 1.9699

n= 2, s = 1 2.1411 2.0583 1.9640 1.9706

n= 2, s = 2 2.1435 2.0607 1.9648 1.9724

ARMA (n*,s*)–FIGARCH (p,d,q)

p= 0, q= 0 2.1485 2.0630 1.9630 1.9757

p= 0, q= 1 2.1504 2.0649 1.9650 1.9776

p= 0, q= 2 2.1524 2.0668 1.9669 1.9796

p= 1, q= 0 2.1405 2.0574 1.9615 1.9705

p= 1, q= 1 2.1388 2.0563 1.9598 1.9705

p= 1, q= 2 2.1408 2.0583 1.9617 1.9732

p= 2, q= 0 2.1532 2.0546 1.9590 1.9704

p= 2, q= 1 2.1395 2.0565 1.9609 1.9723

p= 2, q= 2 2.1414 2.0585 1.9628 1.9743

The upper panel gives the values of the Schwarz Bayesian Information Criterion (divided by T) across the various

ARMA specifications using a FIGARCH (1,d,1) specification. The lower part reports the same statistics across

various FIGARCH specifications using the AR and MA components selected in the first step.
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supported at conventional significance levels. Unsurprisingly, the same conclusion applies

for the FRF (at a 5% nominal level), which is tightly linked to the DEM over the whole

sample period through the European Exchange Rate (ERM) mechanism. In the case of the

GBP, the evidence in favor of the mixture distribution is not as strong but the relevance of

the Bernoulli-normal is still supported by the Pearson test. Finally, the results for the YEN

emphasize the need for either another distribution to capture the dynamics of exchange

rate returns or the introduction of explicit explanatory variables in the conditional mean.

Nevertheless, it should be emphasized that the individual significance of each parameter

specific to the mixtures shows the relevance of introducing jumps in the process. It is also

worth noting that the rejection level of the P( g) test is much less severe than for the normal

distribution. Interestingly, these results are in line with our preliminary procedure adjusting

the data for the detected outliers: the filtered data for the DEM, the FRF and the GBP also

lead to the acceptance of a conditional normal distribution.

One problem of the mixture distribution lies in its failure to specifically account for

excess kurtosis. Relying on the normalized residuals, almost all of the statistics for excess

kurtosis b4 are found to be significant at the 5% level. Nevertheless, the b4’s turn out to be

much lower than those obtained for the normal distribution, which confirms that

accounting for a non-uniform flow of information reduces excess kurtosis. The occurrence

of excess kurtosis in general and the rejection of the relevance of the mixture distributions



Table 2

ARMA (n,s) –FIGARCH (1,d,1) models

Bernoulli-normal distribution

DEM FRF GBP YEN

l 0.0140 0.0102 � 0.0123 0.0258

(1.381) (1.114) (� 1.218) (2.331)

w1 � 0.0472 � 0.0406 – � 0.0387

(� 3.102) (� 2.647) (� 2.346)

x � 0.0246 � 0.0134 � 0.0285 � 0.0415

(� 0.806) (� 1.068) (� 5.585) (� 4.608)

d 0.3206 0.2754 0.2608 0.2665

(5.652) (7.322) (7.769) (7.033)

b1 0.5302 0.2028 0.1571 0.1912

(8.015) (5.032) (4.037) (4.709)

b2 – 0.0895 0.0797 0.0608

(4.338) (4.323) (2.738)

/1 0.2584 – – –

(5.533)

k 0.0651 0.0518 0.1481 0.1122

(1.312) (1.981) (4.085) (3.521)

s � 0.1667 � 0.0335 0.1018 � 0.3068

(� 0.966) (� 0.237) (1.640) (� 3.692)

d2 1.5762 2.2049 0.7466 1.2195

(1.709) (2.122) (4.571) (3.893)

b3 � 0.000 0.009 0.001 � 0.049

b4 0.206*** 0.217*** 0.292*** 0.180*

BDS (6) � 0.719 � 0.825 � 0.158 0.427

S (5) 4.723 4.330 2.342 3.239

P (70) 57.755 87.976* 94.533 102.117***

SC 2.139 2.054 1.959 1.970

LBern � 4575.209 � 4393.102 � 4191.253 � 4121.038

Robust t-statistics are in parentheses. *, ** and *** indicate rejection, respectively, at the 10%, 5% and 1% level

(for the readability of the tables, the *’s are not reported for the estimated parameters). BDS (6) corresponds to the

t-stat of the BDS statistic with m= 6. S (5) is the nonparametric rank test for l= 5. The BDS and rank tests are

computed on the normalized residuals. P (70) is the Pearson goodness-of-fit for 70 cells.
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for the YEN in particular, suggests the need for a further investigation of alternative

distributions. Such an analysis will be carried on in the next section, in which we model a

time-varying jump probability.

In general, the use of different distributions led to relatively similar estimates. In

particular, these results confirm the rejection of fractional differencing in the condi-

tional mean. The parameter estimates are found to be quite similar across these

distributions and the same model is selected. However, it may be seen that for the

estimates of d, i.e. the degree of fractional integration in the variance, the values

obtained with the normal mixture are lower than those found with the normal one.

This is understandable given that jumps, which otherwise may be spuriously

associated with additional volatility, are fully accounted for in the mixture distribution.

A related reason is that the mixture specifies an additional parameter d2, i.e. the
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volatility associated with the jumps. The decrease of the persistence of shocks when

accounting for jumps in the exchange rate dynamics is emphasized in recent literature

focusing on accounting for long memory or on modelling structural changes as

substitutes for each other (Diebold and Inoue, 1999; Granger and Hyung, 1999).

The decrease in the estimate of d obtained here with daily data and static structural

changes agrees with those of Boubel and Laurent (2001) with intradaily data and

Beine and Laurent (2001) with dynamic structural changes (through a Markov

Switching process). The results concerning the value of d are also in line with the

previous findings of Tse (1998) and Beine et al. (2002b) who find moderate long-run

dependence in the volatility of daily exchange rates.
4. Time-varying jump probability

Central bank interventions are thought to play an important role in explaining the

dynamics of exchange rates. It is for instance well known that the day after the Plaza

agreement (September 1985) was made public, the dollar depreciated by 4%. It is

nevertheless unclear whether the central bank interventions themselves or the expectations

built by the market caused these large depreciations: a growing body of literature has

recently investigated the empirical consequences and effectiveness of the major central

bank interventions, using either GARCH estimates of the conditional volatility (Baillie and

Osterberg, 1997a,b; Dominguez, 1998 among others) or relying on the implied volatilities

from the currency option prices (Bonser-Neal and Tanner, 1996). As emphasized in these

papers, the effects are best captured with daily exchange rates since interventions are made

on a daily basis.

Baillie and Osterberg (1997a,b) find that the conditional mean of exchange rate

returns (in the spot or in the forward market) has been mildly affected by some of the

interventions conducted by the Fed, the Bundesbank and the Bank of Japan. As shown

by Baillie and Osterberg (1997b) and Beine et al. (2002a), this effect stands in sharp

contrast with the objectives of the Plaza Agreement (i.e. depreciating the dollar) and is

explained with the ‘‘leaning against the wind’’ phenomena. As reported by Bonser-

Neal and Tanner (1996), the evidence is mixed when using official data of central

bank interventions. More precisely, the presence of significant effects depends upon (i)

the investigated currencies, (ii) the sub-period under consideration12 and (iii) the

specification in the GARCH process.13

The use of central bank interventions as explanatory variables raises several

important statistical problems. The main drawback of this approach is that (i) it fails

to validate the underlying distribution, even after the introduction of the control
12 This is obvious for instance from the results of Dominguez (1998).
13 As shown by Dominguez (1998), the results may be different depending on whether one uses reported

rather than actual interventions and depending on whether one relies on net amounts or only on dummy variables

that simply capture the presence of central banks in the market.
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variables and (ii) it fails to investigate the extent to which these control variables

explain the empirical distribution. As an alternative to the inclusion of intervention

data in a conditional volatility framework, one can rely on an underlying distribution

that specifically accounts for jumps in the dynamics of exchange rate returns. An

example of this type of distribution is a normal mixture that endogenizes the

probability of a jump in the process. Analyzing the behavior of EMS exchange rate

dynamics, Vlaar and Palm (1993) show that these mixtures can reduce the skewness.

Similar results are obtained by Neely (1999). Palm and Vlaar (1997) also document

the relevance of this distribution for the major flexible exchange rates in a GARCH

framework.

As shown in Table 2, the Bernoulli-normal distribution fails to be validated by

goodness-of-fit tests for the YEN exchange rate over the 1980–1996 period.

Furthermore, the empirical distributions still exhibit some excess kurtosis. Conse-

quently, these results emphasize the need for another specification. We build on the

normal mixture model and extend the framework by allowing the jump probabilities to

vary over time.

Before turning to the introduction of these time-varying jump probabilities, it is

important to compare our detected outliers with the estimated number of jumps. Using

the MAD procedure with j = 2, we detected 337 outliers on the DEM over the full

period, which is comparable to the average number of jumps (280) implied by our

model. Since we intend to associate jumps with central bank interventions, it is also

interesting to compare the estimated number of jumps and the intervention data. The

official intervention data on the DEM/USD exchange rate market of the Federal

Reserve and the Bundesbank indicate an occurrence of, respectively, 215 and 264

daily interventions over the 1985–1995 period (the longest available period).14 Out of

these interventions, 97 are coordinated, i.e. they occur the same day (and in the same

direction). This leads to 441 days of interventions in this particular market. Our

Bernoulli-normal model suggests a total of about 280 jumps for the DEM/USD rate,

which seems reasonable if one admits that only a subset of interventions actually

causes a move in exchange rate returns.

Time-varying jump probabilities have been extensively used in the analysis of

exchange rates in the context of ERM currencies (see among others Nieuwland et al.,

1994; Neely, 1999 or Vlaar, 1994). Indeed, in this case, the jump probability may be

associated to a realignment probability, although it is shown that it can capture other

financial events. In this context, unemployment, inflation and/or interest rates differentials

(with respect to Germany) are natural candidates as explanatory variables of the jump

probability. In the context of flexible exchange rates, the choice of explanatory variables is

less straightforward but our starting hypothesis relates jumps to central bank interventions.
14 Source: the Federal Reserve and the Bundesbank. For an overview on the data and on the intervention

policies, see Dominguez (1998). The Bank of Japan interventions data are not available before 1991. As an

alternative, it is possible to use interventions reported in the press but one cannot of course exclude reporting

errors.
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Thus, in Eqs. (7)–(11), we replace k by kt, with kt given by the following logit

specification:

kt ¼ 1� ð1þ expðc0 þ
XM
i¼1

cixi;tÞ�1; ð12Þ

where the xi,t are the central bank intervention variables expected to be related to the jump

probability.15 This analysis is carried out for the DEM and the YEN (as daily central bank

interventions data are not available for the Bank of France and the Bank of England) for

the 1985–1995 period (the longest available period).

Following Dominguez (1998), we separate individual interventions (i.e. interventions

conducted on an unilateral basis by a single central bank) from concerted ones (i.e.

interventions occurring simultaneously and in the same direction)16 as the latter may exert

a different impact. All variables are dummy (0–1) variables and are exclusive (i.e. the

other intervention variables take a value of 0 when a particular variable is equal to 1),

which allows us to compute the additional jump probability explained by each variable. As

a first specification, we introduce three variables: x1,t is a dummy variable that takes 1 if

and only if the Federal Reserve intervenes at time t on an individual basis17 (regardless the

direction of the intervention), 0 otherwise, these interventions amount to 65 in the DEM

market and to 113 for the YEN, x2,t is a dummy variable that takes 1 if and only if the

Bundesbank (167 official interventions) or the BOJ (69 reported interventions)18 inter-

venes at time t on an individual basis (regardless of the direction of the intervention), 0

otherwise; x3,t is a dummy variable that takes 1 if and only if both central banks intervene

at time t (97 occurrences), 0 otherwise.

Note that since the sample size has changed, we have repeated the two-step model

selection procedure explained in the previous section. As shown in Table 3, we end up

choosing an ARMA (0,0)–FIGARCH (1,d,0) model for the YEN while we select an

ARMA (1,0)–FIGARCH (2,d,0) for the DEM. As before, we drop the f parameter, i.e. the

long memory in the conditional mean, which is found to be insignificant in both cases.
15 The definition of xi,t depends on the quotation of the exchange rate. The hours of interventions are not

available but some insights have been given by Dominguez (1999) on the basis of Reuters stamps. For the YEN,

since the quotation of the exchange rate refers to opening prices, xi,t will capture central bank interventions of both

banks the day before the quotation, i.e. at time t� 1. For the DEM, the lag procedure is less straightforward.

Interventions are conducted either before 2:00 p.m. or after 2:00 p.m., depending on whether these are

coordinated or not. Most coordinated interventions take place after 2:00 p.m. to take advantage of the time

overlap between the US and the German markets. This is not required for unilateral interventions. Therefore, we

consider unilateral operations of the Bundesbank at time t while using coordinated and Fed unilateral

interventions at time t� 1.
16 A careful inspection of the data reveals that the two involved central banks never intervene in opposite

directions.
17 Since daily exchange rate data refer to 2:00 p.m. quotations on the London market, we take the one-day

lagged official intervention of the Federal reserve to account for time discrepancies.
18 Since the BOJ does not make their official data available before April 1991, we use interventions reported

by the press as a proxy to official ones. The reported interventions data are taken from the Wall Street Journal over

the 1985–1991 period (we are grateful to C. Bonser-Neal for kindly transferring the data), and from the Financial

Times over the 1992–1995 period.



Table 3

Order selection of the ARMA–FIGARCH model with Bernoulli-normal distribution using the Schwarz Bayesian

Information Criterion (period 1985–1995)

Lags ARMA (n,s) –FIGARCH (1,d,1) Lags ARMA (n*,s*)–FIGARCH ( p,d,q)

YEN DEM YEN DEM

n= 0, s = 0 2.0405 2.1394 p= 0, q= 0 2.0397 2.2278

n= 0, s = 1 2.0422 2.1391 p= 0, q= 1 2.0426 2.2306

n= 0, s = 2 2.0451 2.1409 p= 0, q= 2 – –

n= 1, s = 0 2.0416 2.1388 p= 1, q= 0 2.0384 2.2249

n= 1, s = 1 2.0445 2.1407 p= 1, q= 1 2.0405 2.2242

n= 1, s = 2 2.0473 2.1422 p= 1, q= 2 2.0434 2.2270

n= 2, s = 0 2.0445 2.1405 p= 2, q= 0 2.0405 2.2233

n= 2, s = 1 – 2.1411 p= 2, q= 1 2.0433 2.2261

n= 2, s = 2 2.0473 2.1435 p= 2, q= 2 2.2290 2.2290

The left panel gives the values of the Schwarz Bayesian Information Criterion used for the selection of n* and s*;

the right panel gives the values of the criterion with respect to the FIGARCH specification for n* and s*. (– )

Denotes that convergence was not achieved for this specific model.
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Tables 4 and 5 report the estimation results. For the sake of comparison, the first

column reports the results for the constant jump probability. The column denoted

‘‘Interventions I’’ corresponds to the time-varying probabilities. Note that the values of

the jump parameters belong to the probability space and their standard errors were

recovered using the Delta method (see Goldberger, 1991, p. 110 on this point).

The results confirm that central bank interventions are often associated with the jumps

observed in the dynamics of exchange rates. For both currencies, almost all intervention

variables are found to significantly influence the jump probability. For instance, the jump

probability amounts to 0.76 when the Fed is intervening on the YEN/USD market (i.e.

Pr(c0 + c1) in column ‘‘Intervention I’’ of Table 4), which is well above the constant

probability observed when no intervention occurs, i.e. Pr (c0) = 0.10. Since the occurrence
of jumps is associated with an increase in exchange rate volatility, this implies that our

results are fully consistent with the main conclusions reported by the core of the literature

on the effects of central bank interventions. The distinction between individual inter-

ventions and coordinated ones also seems relevant, particularly for the DEM where the

impact of coordinated interventions is less pronounced.

Interestingly, the introduction of a time-varying jump probability improves the fit of the

model. Indeed, compared with estimation over the same period (see the first columns of

Tables 4 and 5), it is found that the introduction of a time-varying jump probability lowers

the observed excess kurtosis in the normalized residuals: for the DEM, the residuals do not

exhibit excess kurtosis at the 1% nominal level while they do when a constant probability

is assumed, for the YEN, the p-value lies around 5% with the time-varying probability

while it was well below 1% before. Furthermore, the rejection level of the goodness-of-fit

tests is much lower for the YEN with the time-varying probability.19 Finally, a LR test

clearly indicates that this model outperforms the constant jump probability framework.
19 Notice that the number of cells, g, has been adjusted according to the number of observations.



Table 4

Time-varying jump probabilities for the YEN-ARMA (0,0)–FIGARCH (1,d,0)

Constant probability Interventions I Interventions II

l � 0.0008 � 0.0020 0.0011

(� 0.059) (� 0.147) (0.070)

x � 0.0227 � 0.0224 � 0.0367

(� 0.917) (� 1.321) (� 1.230)

d 0.1879 0.1870 0.1872

(4.978) (4.841) (4.858)

b1 0.1263 0.1273 0.1249

(2.478) (2.460) (2.471)

Pr(c0) 0.1214 0.1044 0.0997

(2.321) (2.081) (2.290)

Pr(c0 + c1) – 0.7656 0.9987

(3.352) (423.770)

Pr(c0 + c2) – 0.3576 0.4705

(2.073) (2.167)

Pr(c0 + c3) – 0.4770 0.4717

(2.970) (2.391)

Pr(c0 + c4) – – 0.1601

(0.781)

Pr(c0 + c5) – – 0.6671

(3.192)

Pr(c0 + c6) – – 0.2958

(1.963)

s � 0.2346 � 0.2320 � 0.2550

(� 2.201) (� 2.332) (� 2.628)

d2 1.3935 1.2870 1.3267

(2.837) (2.989) (3.353)

b3 � 0.046 � 0.071 � 0.058

b4 0.229*** 0.182** 0.187**

BDS (6) � 1.077 � 1.280 � 1.232

S (5) 7.172 5.080 11.182**

P (50) 78.871*** 55.201** 57.468**

SC 2.038 2.028 2.035

LBern � 2749.617 � 2724.702 � 2721.214

Pr(c0) stands for the constant jump probability while Pr(c0 + ci) stands for the jump probability associated to the

case where xi,t = 1.
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The improvement is less drastic for the DEM in the likelihood, information criteria and

goodness-of-fit properties of the model, this is understandable given that the relevance of

the distribution holds, even with a constant jump probability. For the DEM, since the jump

only induces an increase in the variance, the interventions are found to exacerbate

exchange rate volatility. For the YEN, the interventions tend to also influence the level

of the exchange rate. These results confirm those of Beine et al. (2002a).

In the estimation results reported in Tables 4 and 5, the f parameter is not significant.

This confirms that the presence of a long memory in the conditional mean is not a robust

feature of nominal exchange rates: it becomes insignificant once outliers are modelled

appropriately (see also Granger and Hyung, 1999). By contrast, the long memory in the

conditional variance is never questioned. However, while highly significant, the estimates



Table 5

Time-varying jump probabilities for the DEM-ARMA (1,0)–FIGARCH (2,d,0)

Constant probability Interventions I Interventions II

l � 0.0267 � 0.0324 � 0.0293

(� 1.890) (� 2.355) (� 1.970)

w1 � 0.0373 � 0.0405 � 0.0409

(� 1.973) (� 2.141) (� 2.151)

x � 0.0148 � 0.0217 � 0.0225

(� 0.427) (� 0.431) (� 0.430)

d 0.2302 0.2385 0.2352

(4.569) (4.422) (4.370)

b1 0.1983 0.2011 0.1997

(3.422) (3.412) (3.388)

b2 0.0786 0.0783 0.0784

(3.249) (3.240) (3.256)

Pr(c0) 0.1086 0.0767 0.0797

(1.595) (1.301) (1.220)

Pr(c0 + c1) – 0.3001 0.3778

(2.537) (2.477)

Pr(c0 + c2) – 0.2189 0.2164

(2.119) (1.540)

Pr(c0 + c3) – 0.3221 0.3459

(1.370) (1.711)

Pr(c0 + c4) – – 0.1764

(1.933)

Pr(c0 + c5) – – 0.5911

(1.088)

Pr(c0 + c6) – – 0.2678

(1.237)

s 0.0078 0.0820 0.0407

(0.0712) (0.733) (0.299)

d2 1.4686 1.5124 1.5121

(2.063) (2.110) (1.937)

b3 � 0.039 � 0.080* � 0.064

b4 0.204** 0.179* 0.189**

BDS (6) � 0.919 � 1.077 � 0.970

S (5) 5.343 2.057 11.681*

P (50) 36.559 36.310 44.912

SC 2.223 2.224 2.231

LBern � 3065.771 � 3054.124 3052.615

See Table 4.
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of the d parameter are lower in the new model compared to the one with a constant jump

probability. This supports the strong interaction between the jumps and the volatility

persistence of exchange rates.

The column titled ‘‘Interventions II’’ reports a second specification, where we allow for

impacts that depend on the direction of the interventions, i.e. whether the intervention is

positive (the central bank is buying dollars) or negative (the central bank is selling dollars).

Once again, there is no overlap in the values taken by the intervention variables: x1,t and

x2,t refer, respectively, to individual purchases and individual sales by the FED, x3,t and x4,t
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refer, respectively, to individual purchases and individual sales by the Bundesbank or the

BOJ, x5,t and x6,t refer, respectively, to simultaneous purchases and simultaneous sales by

the two involved central banks.

Results suggest that buying or selling dollars does not equally influence the jump

probability. For both the YEN and the DEM, the jump probability is higher when the

central banks intervene in support of the dollar. Thus, there is an asymmetry which may be

related to the special role of the dollar as an international currency. On the whole, this

richer specification yields similar results with respect to the relevance of the distribution:

compared to the constant probability model, one observes a decrease in the excess kurtosis

and better goodness-of-fit properties.
5. Conclusion

In this paper, we estimate an ARFIMA–FIGARCH model for four major daily

exchange rates against the US dollar over the 1980–1996 period. Special attention has

been devoted to the choice of an appropriate distribution in the ML estimation procedure.

We find that an important number of outliers are responsible for the rejection of the

normality assumption and that a significant part of these outliers are related to the direct

central bank interventions in the foreign exchange markets. Consequently, we introduce a

normal mixture distribution, the Bernoulli-normal, to account for these outliers.

Quite interestingly, mixtures of normal distributions are often considered as an

alternative to long memory processes (see Diebold and Inoue, 1999; Granger and Hyung,

1999 among others). The empirical results suggest that, in our case, the Bernoulli-normal

distribution is not a substitute to the long memory in the conditional mean since, whatever

the specification choice, we find no evidence of long memory in the conditional mean. By

contrast, the long memory detected in the conditional variance is reduced when accounting

for the jumps observed in the exchange rate dynamics.

Finally, and more importantly, the use of a time-varying jump probability explained by

central bank interventions allows us to provide an economic interpretation of these jumps

and improves the fit of the investigated series. Such a specification is obviously an

alternative modelling strategy to long memory models with a normal distribution or to

approaches excluding the outliers. Our results suggest that central bank interventions have

increased exchange rate volatility, much in line with the findings in the empirical literature.
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